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Abstract

While large, biomedical documents with com-
plex terminology are in need of being under-
stood more easily and efficiently, summariz-
ing this kind of content can be problematic,
as Large Language Models (LLMs) aren’t al-
ways trustworthy. Considering the importance
of comprehending Cardiovascular Diseases, we
study in depth the ability of different state-of-
the-art biomedical LLMs to generate factual
and certain summaries in this topic, and ex-
amine which generation choices can influence
their trustworthiness. To that end, besides us-
ing factuality metrics, we employ techniques
for token-level uncertainty estimation, an area
that has received little attention from the scien-
tific community. Our results reveal dissimilar-
ities between LLMs and generation methods,
and reject potential connections between fac-
tuality and uncertainty metrics, thereby laying
the groundwork for further investigation in the
area.

1 Introduction

Biomedical researchers worldwide try to solve vital
medical problems and publish scientific discover-
ies. Due to the exponentially increasing amount
of scientific publications, summarizing them is vi-
tal, as they enable medical practitioners to keep up
with the literature in an efficient manner. For that
reason, it is crucial that the summary is accurate,
as a minor mistake in explaining a medical concept
or an unclear medical advice to treat a disease can
have severe consequences for the health of patients.
Large Language Models have recently been used
to process and understand this kind of information
in depth.

In recent years, LLMs have gained much at-
tention from the scientific community, as they
have been especially transformative for generative
tasks, such as text summarization, machine transla-
tion, and question answering (Jurafsky and Martin,

2025). Text summarization, the task of our interest,
is the process of creating a brief, accurate, and co-
herent summary of a longer text document. LLMs
have greatly facilitated this task by providing the
option to generate new text with the most salient in-
formation (i.e., abstractive summarization; Shakil
et al. (2024)). In biomedicine, scientific findings
tend to be reported in large documents with com-
plex terminology, so summarizing scientific con-
tent can make important, clinical information acces-
sible to researchers and clinicians more easily and
efficiently (Xie et al., 2023a). However, LLMs may
misrepresent their confidence and have specifically
been shown to overestimate their knowledge and
certainty level (they don’t know what they don’t
know). As a result, they may confidently gener-
ate summaries with hallucinations or ambiguities
(Baan et al., 2023; Hu et al., 2023) that can lead
to misinformation with potentially severe conse-
quences in medical contexts.

Although previous studies have explored uncer-
tainty in biomedicine (Zerva et al., 2017; Kim et al.,
2025), most either attempt to detect confidence ex-
pressions in text (Vasilakes et al., 2022), or focus on
sequence-level uncertainty (Farquhar et al., 2024;
Wagner et al., 2024; Qiu and Miikkulainen, 2024;
Nikitin et al., 2024), frequently requiring the use
of external models, repetitive sampling, or dedi-
cated loss functions. Instead, we focus on simple,
flexible, token-level uncertainty metrics, which can
detect fine-grained local uncertainties, while also
avoiding sequence-level limitations, such as length
bias and over-correction that arise when collapsing
token distributions into a single score. This area
has received little attention in biomedical summa-
rization, despite its importance in early detection
and avoidance of misleading outputs. We thus at-
tempt to address this gap and present early find-
ings, assessing several biomedical LLMs on sum-
marization of literature related to Cardiovascular
Diseases.
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We argue that a trustworthy model should not
only achieve high factuality but also high confi-
dence, especially for factually correct generations.
We thus examine different factors that could influ-
ence factuality and uncertainty, such as decoding
strategies and fine-tuning. We find that the pro-
posed factuality and confidence metrics don’t cor-
relate, but motivate further token-level analysis and
more dedicated uncertainty metrics.

2 Related work

Biomedical summarization has become an im-
portant task and recent studies show an increased
interest at it with the proposal of novel approaches
based on LLMs (Xie et al., 2023a). Firstly, (Luo
et al., 2022) introduced a new task of readability
controllable summarization for biomedical docu-
ments, which aims to recognize users’ readability
demands and generate summaries that better suit
their needs. Moreover, (Luo et al., 2023) proposed
a novel citation-aware scientific paper summariza-
tion framework based on a citation graph, able to
accurately locate and incorporate the salient con-
tents from references, as well as capture varying rel-
evance between source papers and their references.
Lastly, (Xie et al., 2023b) addressed the issues of
low-coherence summaries and the lack of explain-
ability in black-box models by proposing a domain
knowledge-enhanced graph topic transformer for
explainable biomedical text summarization.

Evaluation of factuality in biomedical text gen-
eration is an ongoing challenge. (Zha et al., 2023)
introduced AlignScore, a holistic metric, based on
a general function of information alignment of text
and its unified framework, which achieved sub-
stantial improvements over previous metrics. (Min
et al., 2023) advocated a new evaluation metric
that computes factual accuracy from pieces of gen-
erated text and was used to compare the perfor-
mance of different LLMs. Additionally, (Bishop
et al., 2023) proposed a new evaluation framework,
LongDocFACTScore, for detecting human factu-
ality targeting specifically summarized, long doc-
uments. Finally, (Luo et al., 2024) introduced a
human-annotated dataset of LLM-generated sum-
maries of clinical texts (TreatFact) and revealed
significant performance gaps in terms of factuality
for open-source LLMs.

Previous work has comprehensively examined
uncertainty in Natural Language Generation
(NLG) systems (Baan et al., 2023; Hu et al., 2023)

and has explored strategies to address uncertainty
with the goal of making LL.Ms more trustworthy,
especially in biomedicine (Zerva et al., 2017; Kim
et al., 2025). (Xu et al., 2020) studied summariza-
tion decoders in both blackbox and whitebox ways
by focusing on the entropy of the models’ predic-
tions and revealed that features, such as the sen-
tence position and the syntactic distance between
adjacent pairs of tokens, influence uncertainty. (Ul-
mer et al., 2024) focused on token-level uncertainty
and proposed a method for non-exchangeable con-
formal prediction, which was shown to improve
text generation quality. Finally, (Fadeeva et al.,
2024) introduced a token-level uncertainty method
named Claim Conditioned Probability (CCP), dis-
entangling claim-specific uncertainty from model
decisions on surface forms, etc.

3 Methodology

We propose two different metrics of uncertainty, we
test them to commonly used decoding methods, and
we measure their correlation to factual accuracy.

3.1 Decoding strategies

We evaluate several decoding strategies for LLMs
to identify the one that produces the least uncertain
abstractive summaries. Specifically, we compare:

* Greedy search: At each timestep it selects the
word with the highest probability.

» Top-k sampling: The k most likely words are
filtered and the probability mass is redistributed
among them (Fan et al., 2018).

* Top-p sampling: It chooses from the smallest
possible set of words, whose cumulative prob-
ability exceeds a threshold p. The probability
mass is then redistributed among them.

We note that the token-level uncertainty metrics
(Section 3.3) can be applied across decoding meth-
ods, and, as they do not require sampling several
times, they are also applicable to greedy decoding.

3.2 Factuality metrics

The factuality metrics process the summary (claim)
at the sequence-level and require ground truth (ev-
idence) for computation, which in our case is the
abstract of the article.

HHEM. A series of models for detecting hallu-
cinations in LLMs. These models collect a list
of claims and associated evidence and compute a



score between 0 and 1, where 0 means that the hy-
pothesis is not evidenced at all and 1 means that
the hypothesis is fully supported (Bao et al., 2024).

AlignScore. An automatic factual consistency
metric, built on RoBERTa-large, applying a unified
information alignment function between a claim
and evidence. It splits each claim into sequences
of specific length and each evidence into sentences,
generates pairs, and computes an average score
from the maximum alignment scores of the pairs.
The score is between 0 (no factual accuracy) and 1
(full factual accuracy) (Zha et al., 2023).

3.3 Uncertainty metrics

Below we present the token-level uncertainty met-
rics we use. Even though they compute a value at
each step, we average the values at sequence level.

Token Certainty. As a simple metric of model
certainty at the token level, we use the maximum
probability assigned to any token in the vocabulary
at each decoding step. Thus, token certainty is
defined as:

C = max P(w;), (1)
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where P(w;) is the probability assigned to token
w; in the vocabulary.

Token Entropy. Beyond computing token cer-
tainty based on probabilities, we define a comple-
mentary metric based on the entropy of the token
probabilities at each step, hence accounting for the
full probability distribution over the vocabulary. It
is computed as:

\%

E == (P(w;)log(P(w)), )

i=1
where P(w;) is the probability assigned to token

w; in the vocabulary and V is the vocabulary size.

4 Experimental Setup

Below we describe the different features that are
set up for the conduction of the experiments.

4.1 Biomedical LLMs

We use decoder-only LLMs that have been fine-
tuned on biomedical content and give full access to
the parameters for a more focused experimentation
!, Specifically, we select the following variants:

"For all models we use the version available on Hugging-
Face (Wolf et al., 2019).

BioMistral-7B (Labrak et al., 2024) is a suite
of Mistral-based open source models pre-trained
using textual data from PubMed Central Open Ac-
cess. BioMistral is the first biomedical, multilin-
gual LLLM, demonstrating superior performance
compared to existing open-source medical models.
For the scope of our research, we use the default,
7B parameters version.

Meditron3-8B “ is a LLaMA3.1, 8B model from
a suite of open-source LL.Ms adapted to the medi-
cal domain named Meditron3. The models of this
collection are co-designed by a global group of
clinicians, humanitarian practitioners, and data sci-
entists.

Phi4-14B is a decoder-only transformer of Mi-
crosoft built upon a blend of synthetic datasets, data
from filtered public domain websites and acquired
academic books, and Q&A datasets (Abdin et al.,
2024). For compatibility with our work, we make
use of the 14B parameters model from Meditron3,
a model based on the Microsoft one.

Qwen2.5 models are another category of the
Meditron3 collection fine-tuned from the organi-
zation of Qwen (Yang et al., 2024). Evaluation of
used 7B and 14B parameters models showed that
they are a better option for capturing real-world
utility, especially in terms of contextual adaptation
in under-represented settings.

4.2 Cardiology dataset

Cardiovascular Diseases (CVDs) are the leading
cause of death worldwide and a major contributor
to reduced quality of life, with their prevalence
driven by lifestyle and healthcare factors (Mensah
et al., 2023; Mendis et al., 2011). Early detection
and effective management are therefore essential to
improving patient outcomes and reducing health-
care burdens. To support research in this area, we
use biomedical literature from PubMed 3. The
dataset that we base our work on originates from
(Cohan et al., 2018), which contains an amount of
PubMed, long, and structured documents and we
keep the same training, validation, and test splits.
Additionally, the majority of the records contain
one or more indexes named Medical Subject Head-
ings (MeSH) #. The condition applied to filter the
appropriate records is checking whether at least
one of the MeSH terms falls into the category “Car-
diovascular Diseases”. Moreover, we ignore the

Zhttps://github.com/OpenMeditron
3https://pubmed.ncbi.nim.nih.gov/
*https://www.ncbi.nlm.nih.gov/mesh/



records that have more than 8,192 tokens when pro-
cessing, due to memory constraints. After these
filterings, a total of 3,924 records for training, 230
records for validation, and 205 records for infer-
ence remain.

4.3 Input representation

The model input prompt is structured as follows:
PROMPT article RESPONSE abstract
for fine-tuning and:
PROMPT article RESPONSE
for inference, where PROM PT is "Summarize
the following biomedical article in a clear and con-
cise manner, in no more than 300 words:" and
RESPONSE is "Summary:".

4.4 Hyperparameter settings

Our experiments are conducted on an Amazon,
pS.48xlarge instance equipped with 192 vCPUs,
2,048 GiB RAM, and 8 NVIDIA H100 GPUs, each
with 80 GiB of memory. Additionally, LoRA is ap-
plied to the models, and each biomedical model is
fine-tuned with the cardiology dataset on 3 epochs
with a batch size of 1, learning rate of 5°-5, and
the AdamW optimizer. Lastly, for the text genera-
tion strategies, we set K to 50 in the top-k sampling
method and p to 0.70 in the top-p sampling method.

5 Results

In this section we present the comparisons across
the metrics and models described above, account-
ing for different aspects, like the overall perfor-
mance of the LLMs, the effect of fine-tuning on
factuality and uncertainty, as well as differences
between the decoding strategies. Finally, we assess
the correlation between the factuality and uncer-
tainty metrics.

5.1 Model Performance and Contribution of
instruction fine-tuning

At first, we want to observe the level of contribu-
tion of instruction fine-tuning on the models. In
Table 1 we present the experiments using greedy
decoding. For the majority of the models, we do
not observe significant improvements in terms of
factuality and only small improvements in terms
of certainty, because instruction fine-tuning pushes
the LLMs to generate long outputs with knowledge
they haven’t seen before (Wu et al., 2025). How-
ever, as we want to keep the added information into
all the models, we continue the experiments with
the instruction fine-tuned ones.

We then compare the overall performance and
trustworthiness of LLMs, focusing on the fine-
tuned versions. Using the average rank shown in
Table 1, it can be observed that the Qwen models
are the best option across metrics, while Meditron-
8B lags behind in both cases.

5.2 Investigation of decoding strategies

It is also important to understand whether different
decoding strategies can impact the trustworthiness
of a summary. For this comparison, we use the
Qwen-7B and Qwen-14B models, since they out-
perform the rest with greedy decoding. From Table
2, it is evident that the sampling methods generate
the most trustworthy summaries, i.e., outperform
greedy decoding across metrics, with the token-
entropy values decreasing greatly, producing both
more accurate summaries, but also demonstrating
higher model confidence during generation.

5.3 Correlations between the factuality and
uncertainty metrics

As an initiative of finding relationships between
the factuality and uncertainty metrics, we compute
their correlation using Pearson’s r. The sequence-
level and token-level measures are paired with each
other. The results in Table 3 show that, besides the
expected correlation of Token Certainty and Token
Entropy, the two types of metrics aren’t correlated
(a confident statement isn’t necessarily factual).

6 Conclusions & Future Work

We evaluated the trustworthiness of state-of-the-art
biomedical LLMs on summarization using both fac-
tuality and token-level uncertainty metrics. Results
showed that model choice and decoding strategy
influenced trustworthiness, even though we applied
standard values on the sampling strategies for K
and p, with Qwen variants performing best and
sampling-based methods, especially top-p, produc-
ing more factual and confident summaries.
Several promising directions for future work in-
clude expanding the evaluation to larger and more
diverse biomedical datasets to improve statistical
reliability and test the generalizability of token-
level uncertainty metrics across domains. Another
direction is investigating different decoding hyper-
parameters to gain insights into how generation set-
tings affect factuality and uncertainty. Finally, eval-
uating larger biomedical LLMs, including closed-
source models, and incorporating human evalua-



Model HHEM AlignScore Token Certainty Token Entropy Average Rank
7S FT 7S FT YA FT 7S FT Fact. Uncert.
BioMistral-7B  0.1807 0.1915 0.4493 0.3364 0.7736 0.6746 0.4007 0.5239 3 2.5
Meditron-8B  0.1991 0.1994 0.3104 0.3112 0.6153 0.6239 2.1242 2.0916 4 5
Phi-14B 0.2420 0.2415 0.2319 0.2313 0.7487 0.7450 1.5654 1.5900 3 35
Qwen-7B 0.2263 0.2251 0.3263 0.3266 0.7445 0.7471 0.9976 0.9868 2.5 2
Qwen-14B 0.2367 0.2324 03158 0.3131 0.7678 0.7709 1.1612 1.1448 2.5 2

Table 1: Comparison of factuality and uncertainty across LLMs and effect of instruction fine-tuning. Bold values
represent the best score for each metric and underlined ones the best score for each column. Results of zero-shot
models are shown in the ZS columns and these of fine-tuned ones in the FT. Average ranks are shown separately for

factuality (Fact.) and uncertainty (Uncert.).

Method HHEM AlignScore Certainty Entropy

g Greedy 0.2251 0.3266 0.7471  0.9868
& Top-k  0.2206  0.3161 0.7698  0.2361
g Top-p 02354  0.3369 0.7988  0.1577
g Greedy 02324 03131 0.7709  1.1448
‘; Top-k 02375  0.3496 0.7343  0.3265
g Top-p 02414  0.3416 0.7868  0.2033
=4

Table 2: Decoding strategy comparison for Qwen-
7B/14B on factuality and uncertainty. Bold marks the
best per metric within each model.

Correlation r p

Certainty-Entropy -0.8535  0.0000
Certainty-HHEM -0.0932  0.1836
Certainty-AlignScore  0.01241 0.8594
Entropy-HHEM 0.1213  0.0831
Entropy-AlignScore  -0.0362  0.6068

Table 3: Observation of Pearson r correlation between
the factuality and uncertainty metrics. The Qwen 7B
model is used and rows with bold values indicate corre-
lation.

tion, along with automatic metrics, would further
strengthen the reliability of the results.

Limitations

Although our work gives a great initiative for factu-
ality and token-level uncertainty quantification in
biomedical applications, there are still some areas
that could be explored. At first, token-level uncer-
tainty metrics can be used to other specializations
of medicine in the future, other than cardiology, in
order to proof the generalization of our work. Addi-
tionally, more descriptive, token-level metrics can
be incorporated into the experiments for further un-
certainty detection and quantification. Moreover, as

we use Pearson coefficients, which do not account
for confounding factors, like model architecture,
decoding strategy, or dataset characteristics, some
correlations may reflect model-level biases, rather
than true causal relationships. The lack of compar-
ison of automatic metrics to human evaluation is
another limitation, which could strength the paper
claims, if conducted. Lastly, due to the fact that
factuality is a very important topic, future enhance-
ments could investigate deeply factual accuracy
and relativity to uncertainty.
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high uncertainty

Below we present the least and most uncertain
summaries of different cases using the fine-tuned,
Qwen-7B model.

Greedy search (Least uncertain)
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Summary: A network is generated by deter-
mining the first- and second - order interactions
of cd proteins associated with a given morpho-
logical subgroup in a human protein interaction
network consisting of refined experimental pro-
teomics data . This network is described in high
detail in lage et al ( 2007 , 2008 ) , and online (
http://www.cbs.dtu.dk/suppl/dgf/ ) . Interactions
of the cd proteins are integrated into a network
by always including direct interactions between
cd proteins , and only including indirect interac-
tions mediated through proteins with q percent of
its interactions to the cd set . Various thresholds
for q are iteratively tested and value of q for the
final network is chosen based on which value gives
the optimal network significance , this procedure
is described in detail in bergholdt et al ( 2007 )
and d’hertog et al ( 2007 ) . The method for deter-
mining network significances can be seen below
. Detailed views of the networks can be seen in
supplementary figures s1,s2 , s3 and s4 . The sig-
nificance of each of the generated 19 networks was
determined by randomization testing as described
in detail earlier ( bergholdt et al , 2007 ; d’hertog
et al , 2007 ) . Specifically , for an input set of
ninput proteins yielding an interaction network (
connected component ) with g input proteins and t
total proteins , a network score ( ns

Greedy search (Most uncertain)

PMCID: PMC4635763

Summary: A 67-year-old woman presented to
the emergency department with a sudden collapse
and was found to have a cardiac myxoma, a rare tu-
mor of the heart. The patient’s initial presentation
was characterized by ST-elevation myocardial in-
farction, but her coronary arteries appeared normal
on immediate angiography. She also experienced a
stroke, which is relatively common in cardiac myx-
oma patients. The patient underwent successful
surgical resection of the myxoma, and her condi-
tion improved. This case highlights the importance
of basic echocardiography in diagnosing cardiac
myxomas and emphasizes the need for timely sur-
gical intervention to prevent complications.

Top-k sampling (Least uncertain)

PMCID: PMC3297038

Summary: There are similarities between chil-
dren and adults suffering from heart failure, such as
the preferred pharmacological treatment, the use of
pacemakers and heart transplants, the inability of
the patient to reach the predicted heart rate for the
patient’s age during cardiopulmonary exercise test-



ing, and the ergoespirometric response under simi-
lar clinical conditions. In adults, endothelial dys-
function is related to the development of diastolic
dysfunction, Chagas disease, left ventricular hy-
pertrophy, ischemic cardiomyopathy, heart failure,
obesity, type 1 diabetes, hyperlipidemia, arterial
hypertension, peripheral arterial disease, chronic
kidney disease, and atherosclerosis because the
dysfunction predisposes the vasculature to vasocon-
striction, leukocyte adherence, platelet activation,
and vascular inflammation. Nevertheless, there is a
lack of data regarding endothelial function in chil-
dren with cardiomyopathy. The severity of endothe-
lial dysfunction is related to the cardiovascular risk,
the severity of cardiovascular symptoms, and the
inability to exercise and represents a predictor for
cardiac transplant and death. It is known that dis-
eases, such as Kawasaki’s disease, hyperlipidemia,
obesity, and type 1 diabetes, play important roles
in systemic inflammation and endothelial dysfunc-
tion. These diseases may increase the likelihood of
cardiovascular events and may predispose children
to the development of cardiomyopathy. Based on
these considerations, we reviewed the published
literature on endothelial function in pre-pubertal
children to evaluate the endothelial function in pre-
pub

Top-k sampling (Most uncertain)

PMCID: PMC5290108

Summary: Intra-amniotic inflammation may in-
crease the risk of adverse perinatal outcomes in
preterm infants, but this risk is mainly due to low
gestational age at birth rather than direct effects of
inflammation. Culture-proven intra-amniotic infec-
tion does not appear to be a risk factor for adverse
perinatal outcomes.

Top-p sampling (Least uncertain)

PMCID: PMC4666010

Summary: this is a retrospective cross - sectional
study . there were 4,377 participants , all of whom
underwent cardiac ct in a health promotion center
at gangnam severance hospital ( seoul , korea ) be-
tween january 2008 and february 2013 . from 4,377
participants , we excluded men ( n=2,584 ) and pre-
menopausal women ( n =748 ) . postmenopausal
women 50 years or older with no menstrual periods
for more than 12 consecutive months and women
with elevated follicle - stimulating hormone levels
(>301iu/1) were included in this study ( n = 1,045
) . women with diabetes mellitus (n =59 ) , exces-
sive alcohol consumption ( n =7 ), viral hepatitis
( positive results for hepatitis b surface antigen or

anti hepatitis c virus ; n = 19 ), liver cirrhosis or
malignancy on ultrasonography (n=6), and self
- reported or medically verified history of cvd ( n
=35 ) were excluded from this study . height and
weight were measured , and body mass index ( bmi
) was calculated by dividing weight ( kg ) by the
square of height (m ) . lifestyle , personal medical
history of acute and

Top-p sampling (Most uncertain)

PMCID: PMC5192323

Summary: The present study demonstrates that
plasma CTRP9 levels are independently and posi-
tively associated with carotid intima-media thick-
ness in patients with type 2 diabetes without
chronic kidney disease. This study further proposes
that plasma CTRP9 level is a potential biomarker of
atherosclerosis in type 2 diabetes patients without
renal complications.
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