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Abstract

The quality of training data is crucial for the
performance of supervised machine learning
models. In particular, poor annotation qual-
ity and spurious correlations between labels
and features in text dataset can significantly
degrade model generalization. This problem
is especially pronounced in harmful language
detection, where prior studies have revealed
major deficiencies in existing datasets.

In this work, we design and test data selection
methods based on learnability measures to im-
prove dataset quality. Using a sexism dataset
with counterfactuals designed to avoid spurious
correlations, we show that pruning with EL2N
and PVI scores can lead to significant perfor-
mance increases and outperforms submodular
and random selection. Our analysis reveals
that in presence of label imbalance models rely
on dataset shortcuts; especially easy-to-classify
sexist instances and hard-to-classify non-sexist
instances contain shortcuts. Pruning these in-
stances leads to performance increases. Prun-
ing hard-to-classify instances is in general a
promising strategy as well when shortcuts are
not present.

Warning! This paper contains instances of sex-
ist text to serve as examples

1 Introduction

Selecting a high-quality subset from a dataset has
long been a fundamental challenge in machine
learning, wherein the objective is to construct an op-
timal subset from a larger data pool based on a pre-
defined criterion (Sener and Savarese, 2018), while
preserving or improving model performance rel-
ative to the original dataset and ensuring data effi-
ciency. In the context of hate speech detection,
however, many curated datasets suffer from an
over-representation of certain target identities and
keywords (Kennedy et al., 2020; Sap et al., 2020;
Founta and Specia, 2021; Yu et al., 2024), which

limits the generalizability of models trained on
them.

The over-representation of target identities and
certain words can lead to surface-level correlations
between sentence-level patterns (tokens or phrases)
and labels that models learn to associate. Such
surface-level correlations are called “shortcuts” and
they have been observed in the context of harmful
language detection datasets, see e.g. (Sap et al.,
2019). Prior work that has investigated the problem
of model’s over-reliance on shortcuts has mainly fo-
cused on gradient-based techniques (Bastings et al.,
2022; Pezeshkpour et al., 2022) that do not cap-
ture patterns present in the training data and are
known to suffer from stability issues (Basu et al.,
2021a; Epifano et al., 2023). Complementary to
these approaches, corpus-level methods proposed
by Gururangan et al. (2018) and adopted by Ram-
poni and Tonelli (2022) aim to identify token-level
shortcuts via manual annotation, a process that is
often time-consuming and resource-intensive.

Unlike prior work, this study uses grammar in-
duction (Friedman et al., 2022) to identify dataset
shortcuts and explores how they affect the learn-
ability of data points during fine-tuning. We quan-
tify the learnability of data points using Influence
Scores. Influence Scores are metrics that measure
how learnable or difficult a training data point is
for a model, based on information theory, loss gra-
dients, and training dynamics (Anand et al., 2023).

We focus on two widely used Influence Scores:
Pointwise V-Information (PVI) (Ethayarajh et al.,
2022) and Error L2-Norm (EL2N) (Paul et al.,
2021). PVI measures the learnability or difficulty
of a data point from an Information Theoretic per-
spective while EL2N quantifies the difficulty of a
data point from a margin-based perspective as we
elaborate in Sections 3.1 and 3.2. We present a
case study that focuses on a comprehensive dataset
(Sen et al., 2022) that has been designed for the
task of sexism detection and includes counterfac-



tually augmented data to avoid spurious correla-
tions. In our experiments we investigate how differ-
ent data selection methods that are based on these
Influence Scores affect the performance of BERT-
based classifiers namely BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) on in-distribution
and out-of-distribution settings. We contrast our
designed data selection strategies with submod-
ular maximization (Krause and Golovin, 2014),
an automated method that has been used to suc-
cessfully select a diverse and representative subset
of data points from a datasets (Kothawade et al.,
2022a; Renduchintala et al., 2023; Mualem et al.,
2023). Our results show that removing potentially
noisy data points from the training dataset based
on EL2N scores leads to more statistically signifi-
cant performance improvements than pruning data
using PVI, submodular maximization, or random
selection on out-of-distribution test data. Further-
more, we find that proportionally pruning hard-
to-classify instances from both classes based on
PVI and EL2N scores results in performance gains
across both in-distribution and out-of-distribution
test datasets.

We complement our quantitative analysis with
qualitative insights on data points containing short-
cuts. Our results show that both easy-to-classify
sexist instances and hard-to-classify non-sexist
instances contain shortcuts. Pruning these in-
stances leads to performance increases. Pruning
hard-to-classify instances is in general a promis-
ing strategy also when shortcuts are not present.
Hard-to-classify instances with shortcuts are of-
ten minimal-edit counterfactuals, while hard-to-
classify instances without shortcuts often contain
spelling mistakes or lack context.

We hope our research informs future work on
combining pruning methods based on Influence
Scores with shortcut induction methods, since the
case study suggests that this is a promising direc-
tion to improve the quality of training data for ma-
chine learning models applied to the identification
of subjective tasks like sexism. We release our
code and datasets for reproducibility purposes in
the following link.

2 Related Work

The selection of data points from large datasets
by quantifying their importance has been a long-
standing challenge in Machine Learning. Influ-
ential publications by Koh and Liang (2020) and

Han et al. (2020a) have extended the concept of
Robust Statistics (Hampel et al., 2005) to Deep
Learning by introducing the so-called Influence
Functions. Such functions measure the effect of
removing a data point during training on test pre-
dictions. They have been scaled to Large Language
Models (LLMs) for quantifying data influence for
pre-trained LLMs (Choe et al., 2024; Grosse et al.,
2023), selecting data for pre-training (Wang et al.,
2023) and Low-Rank Adaptation (LoRA)-based
fine-tuning(Kwon et al., 2024).

Alternative Influence Scores have been proposed
to assess data importance by quantifying learn-
ability, including training dynamics-based scores
such as Forgetting Scores (Toneva et al., 2019)
and Error L2-Norm (EL2N) (Paul et al., 2021),
gradient-based scores like Variance of Gradients
(VoG) (Agarwal et al., 2022) and Gradient Nor-
malized (GraNd) (Paul et al., 2021), Neural Tan-
gent Kernel based scores (Jacot et al., 2020) such
as TracIn (Pruthi et al., 2020), and information-
theoretic scores like Pointwise V-Information (PVI)
(Ethayarajh et al., 2022).

Influence scores have been leveraged for dataset
pruning in both NLU and generative tasks. In NLU,
EL2N and VoG scores have been used to prune in-
stances from datasets like SNLI (Bowman et al.,
2015) and AGNews, leading to maintained or im-
proved performance (Fayyaz et al., 2022; Anand
et al., 2023). In machine translation, cross-entropy,
BLEU score, and recently proposed CAT score
(Checkpoints Across Time) (Chimoto et al., 2024)
have been employed to prune datasets such as
WMT16 En-Ro and En-Tr, enabling more efficient
training (Azeemi et al., 2023; Chimoto et al., 2024).

Data selection using Influence Scores has been
extended to instruction tuning datasets. Xia et al.
(2024) adapted Tracln scores to select instances
from diverse instruction datasets, showing that
training on only 5% of the data improved general-
ization to out-of-domain instructions. Zhang et al.
(2025) proposed a pruning strategy using a vari-
ant of GraNd and EL2N scores for task-specific
core-sets, termed Speculative Selection. Addition-
ally, Zhang et al. (2024a) used PVI to filter query-
response pairs for Direct Preference Optimization
(DPO) (Rafailov et al., 2023), demonstrating per-
formance improvements in preference-tuning tasks.
For a broader overview of core-set selection in In-
Context Learning (Brown et al., 2020), instruction
tuning (Zhang et al., 2024b), and preference tuning
(Ouyang et al., 2022), readers may refer to Albalak


https://github.com/RabirajB/influence_score_pruning_sexism

et al. (2024).

In the realm of sexism detection Bandyopad-
hyay et al. (2024) applied influence-based scoring
methods namely PVI, EL2N, and VoG to a com-
bination of sexism detection datasets. They found
that pruning up to 50% of the hardest-to-learn data
points did not affect model performance in either
in-distribution or out-of-distribution evaluations.
However, their work does not compare different
data selection strategies based on both automated
and Influence Scores based, nor does it analyze
how dataset shortcuts affect the learnability of in-
dividual examples during fine-tuning. A similar
limitation applies to Anand et al. (2023), who pro-
posed brute-force pruning strategies for the SNLI
dataset aimed at data-efficient fine-tuning.

In this paper, we focus on PVI and EL2N, as
they represent learnability from information-theory
and training dynamics perspectives respectively.
Moreover, they do not suffer from stability issues
like gradient-based scores such as TracIn and VoG
(Basu et al., 2021b; Epifano et al., 2023). Unlike
previous work we analyze data points qualitatively
by focusing on how shortcuts affect the chosen In-
fluence Scores for a training data point. Addition-
ally, we design pruning strategies using the score
values while at the same time considering label im-
balance. We compare our pruning strategies with
submodular maximization, which selects a diverse
and representative subset; and random selection.

3 Methods

We introduce Influence Scores, which we use to
quantify the learnability of individual data points
and to design various data selection strategies. Ad-
ditionally, we include submodular maximization as
an automated baseline method for data selection.
Finally, we present a grammar induction approach
to uncover structural patterns in the data.

3.1 Pointwise V-Information

Pointwise V-Information (PVI) (Ethayarajh et al.,
2022) is an information-theoretic metric that mea-
sures the usable bits of information for a model in
predicting the corresponding label of a data point.
It extends the Predictive V-Information metric pro-
posed in (Xu et al., 2020) to understanding the
difficulty of text data for classification. The metric
is calculated by training/fine-tuning two models
(¢ and g), one on input-target pairs (i.e., a com-
bination of text inputs (z) and labels (y)) and one

on target labels (i.e., a combination of null inputs
(¢) and labels (y)). PVI measures the ease with
which a model can predict a certain label given an
input by calculating the following quantities for
each data point z.

pvi(z) = —logag[o]ly] + logag'[x][y] (1)

A negative PVI indicates that the instance was
hard for the model to classify, and the probability
of misclassification increases as the PVI score be-
comes more negative. Conversely a positive PVI
score for a data point increases the odds of correct
classification of that data point by the model, hence
these instances are considered easy.

3.2 Error L2-Norm

Error L2-Norm (EL2N), proposed by Paul et al.
(2021), assigns scores to data points based on their
classification confidence in early training epochs.
It estimates how easy or hard a sample is to clas-
sify using the norm of the predicted probabilities
relative to the true label. As a margin-based metric,
lower EL2N scores indicate greater distance from
the decision boundary, suggesting the data point is
easier to classify. Higher scores imply proximity
to the boundary and greater classification difficulty.
Mathematically for a given data point z, EL2N is
calculated by

[softmaz(g(x)) - yll2 2

where g denotes the model. In Equation 2, y is the
one-hot encoding of the label and so ftmax(g(x))
represents the probability after applying a softmax
function to the model logits. Prior work has shown
that the EL2N score is also adept at surfacing use-
ful data points from training data when applied
to natural language settings in case that a BERT
model is trained for at least 5 epochs (Fayyaz et al.,
2022; Anand et al., 2023).

3.3 Submodular Maximization

Submodular maximization encompasses a family
of automated data selection methods that aids in
selecting an informative and diverse subset, from
a larger super-set. We are interested in selecting
a diverse core-set from the training data (which
is our super-set). Hence, we choose Facility Lo-
cation (Krause and Golovin, 2014; Renduchintala
et al., 2023; Mualem et al., 2023) that intervenes
at the embedding level and selects a diverse group



of data points while maintaining the diversity and
representativeness of the original dataset. More
details about the implementation of submodular
maximization are in Section 4.2.3. We refer the
reader to Appendix A.3 for a detailed discussion
on submodularity and submodular maximization.

3.4 Dataset Shortcuts

Shortcuts are surface-level correlations between
sentence-level patterns (tokens or phrases) and la-
bels that humans assign to the sentence. Short-
cuts are often a consequence of annotation artifacts
or the so-called spurious correlations (Gururangan
et al., 2018; Friedman et al., 2022). Shortcuts are
problematic if they do not generalize to test distri-
butions since they may lower out-of-distribution
test data performance. Unlike prior work (see Bast-
ings et al. (2022); Pezeshkpour et al. (2022); Ram-
poni and Tonelli (2022)), we do not focus only on
token-level correlations using Integrated Gradients
(Sundararajan et al., 2017) or Influence Functions
(Han et al., 2020b). We are interested in finding
shortcuts (both token and phrase level patterns) that
the model can use during fine-tuning to generalize
from the training data.

To identify shortcuts in our data we train a Prob-
abilistic Context Free Grammar (PCFG) model,
following the approach in Friedman et al. (2022).
A PCFG aids in inferring the grammatical struc-
ture of the data points in the dataset. We extract
the subtrees (aka linguistic feature structures) that
are highly correlated with the positive minority
class (sexist). We qualitatively examine the relation-
ship between shortcuts in our training dataset and
the chosen Influence Scores (PVI and EL2N) to
shed light on the difficulty of data points contain-
ing shortcuts for the model.

4 Experimental Setting

We design different data selection strategies based
on PVI and EL2N and compare them with random
selection and submodular maximization. To assess
the effectiveness of these strategies we train sex-
ism classifiers on a sexism-dataset and on several
pruned variants, and compare their performance
across multiple test datasets. In the following, we
describe our data, data selection strategies, and ex-
periments in detail.

4.1 Datasets

For our experiments, we use the Call Me Sexist
But (CMSB) dataset as training data (Samory et al.,

2021) because it covers different theoretical dimen-
sions of sexism, provides at least five annotations
per instance and contains counterfactual augmenta-
tions through minimal edits (e.g., removing nega-
tions, replacing gendered groups inter-alia).

Test-Data. To compare performance and assess
the generalizability of our pruning methods, we
use the following datasets for out-of-distribution
evaluation: Explainable Detection of Online Sex-
ism (EDOS) (Kirk et al., 2023), sEXism Identi-
fication in Social neTworks task dataset (EXIST)
(Rodriguez-Sénchez et al., 2022) and HateCheck
(Rottger et al., 2021). For HateCheck, we extract
the examples targeting the identity woman. We re-
fer to this subset as HateCheck(Sexism) throughout
the paper. The dataset statistics are reported in Ta-
ble 1. We present the distribution of PVI and EL2N
scores for the sexist and non-sexist subsets of the
CMSB (Train) split in Figure 1. The histogram
plots indicate that data points with a PVI score
above the mean and those with an EL2N score
below the mean are more likely to be correctly clas-
sified. This suggests that the scores capture how
easy a given data point is for the model to learn.

Dataset Non-Sexist  Sexist
CMSB (Train Split) 8,272 1,269
CMSB (Test Split) 3,550 540
HateCheck (Sexism) 373 136
EXIST 1,800 1,636
EDOS 15,146 4,854

Table 1: Dataset statistics: Number of sexist and non-
sexist instances per dataset used in our experiments.

4.2 Experiments

This section outlines the data selection strategies
and the classification experiments that have been
considered in our evaluation. Anand et al. (2023)
demonstrated that pruning up to 45% of the SNLI
training dataset does not harm model performance.
Inspired by this, we prune up to 60% of our data.
The specific pruning strategies are detailed in Sec-
tions 4.2.1 and 4.2.2.

4.2.1 Informed Undersampling

To address the class imbalance present in our
dataset (see Table 1), we introduce a data selection
strategy called Informed Undersampling. In this
approach, instances from the majority class (non-
sexist) are selectively removed based on either PVI
or EL2N scores. The training data is sorted by PVI
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Figure 1: Distribution of PVI and EL2N scores: The first row shows the distribution of all sexist and non-sexist instances in
the CMSB training data, while the second row shows the distribution of instances that contain shortcuts. Dashed lines indicate
the mean values of each distribution. Instances correctly classified in at least 3 out of 5 training runs are labeled as “correct”
(blue), while those misclassified in more than 3 runs are labeled as “incorrect” (red). For PVI, scores above the mean correspond
to correctly classified (“easy”) instances, while scores below the mean indicate misclassified (“hard”) ones. A similar pattern
is observed for EL2N, where lower scores correspond to easier instances. This trend holds for both sexist and non-sexist data.
The PVI and EL2N distributions for instances containing identified shortcuts (see examples in Table 5) shows that most sexist
instances with such shortcuts are correctly classified, with PVI scores above 1.78 and EL2N scores below 0.77. This suggests
that the model leveraged these shortcuts during fine-tuning. In contrast, non-sexist instances with shortcuts exhibit lower PVI
(—0.24) and higher EL2N (0.30) means. This indicates that on average the sub-set of non-sexist instances with shortcuts are

harder than the super-set of non-sexist instances.

scores in ascending order (from hardest to easiest)
and by EL2N scores in descending order (also from
hardest to easiest). We evaluate four variants: IU-
PVI-H, IU-PVI-E, IU-EL2N-H, and TU-EL2N-E.
Here, IU denotes Informed Undersampling, the
middle component in each variant name indicates
the influence score used (PVI or EL2N), and the
final letter specifies whether hard (H) or easy (E)
non-sexist instances are pruned. The remaining
non-sexist instances are then combined with the
full set of sexist instances to form the training data
used for classification.

4.2.2 Proportional Pruning

This strategy evaluates how pruning equal propor-
tions of instances from both the majority (non-
sexist) and minority (sexist) classes while pre-
serving their original class ratio affects model
performance in both in-distribution and out-of-
distribution settings. Following Tinzer et al.
(2022), we ensure that each class retains at least

100 instances to prevent drastic performance drops
during BERT fine-tuning.

Data points are ranked from highest to lowest
(i.e., hardest to easiest) based on EL2N scores, and
from lowest to highest (also hardest to easiest) for
PVI scores. PP stands for Proportional Pruning.
We use the placeholder inf_score to indicate the
scoring method (i.e., either PVI or EL2N). Thus,
we define four proportional pruning variants that
differ in which portions (E = Easy and H = Hard)
of each class are removed:

* PP-inf_score-EE: prunes easy instances from
both classes.

* PP-inf_score-EH: prunes easy instances from
the sexist class and hard instances from the
non-sexist class.

* PP-inf_score-HE: prunes hard instances from
the sexist class and easy instances from the
non-sexist class.

* PP-inf_score-HH: prunes hard instances



Method EXIST EDOS Hatecheck

15% 30% 60% 15% 30% 60% 15% 30% 60%
Unpruned (0%) 40.545.0 53.446.4 46.5110.5
Random
random 382445 36.6429 34.6403 49.8454 48.54+55 43.8409 34.8486 36.8+129 22.94138
Submod. Max.
max 37.3i3.4 35.4i1Ag 34.3i0A0 50.0i5,4 45.2i2‘7 43.1i0A0 40-2i946 27.1i7‘0 21.1i0‘1
Informed
IU-PVI-H 54.6%45 55.8%90 484120 58.6430 524143 353146 46.84556 41.648.8 38.218.6
IU-PVI-E 3811209 35.5413 347102 509453 472140 45.0414 43.71105 40.7195 274456
IU-EL2N-H 58.5%45 61.1%50 56.3120 61.0593 52.8418 36.2403 51.7421 46.641.6 43.7+1.2
IU-EL2N-E 41.1j:3.8 3541;‘:1.3 34.7:‘:0.2 53.6:‘:5.3 46.2;{:4,0 45.011,4 44.5i10,2 31.4i10,0 300:{:8,3
Proportional
PP-PVI-EE 38.643.8 34.3100 34.3100 524154 43.01000 43.0100 43.9+45 21.1401 21.0+0.0
PP-PVI-EH 51.3%76 55.7%h74 547454 59.1%7¢ 599555 578418 49.1445 52.043.4 474491
PP-PVI-HE 381129 36.7110 36.1110 51.0145 48.7119 483140 423197 41.849.3 40.2411.0
PP-PVI-HH 45. 7478 B587%17 bH41ias5 56.2444 61.0%0,4 483142 46.9133 51.241.8 47.640.6
PP-EL2N-EE 39.4i4,9 35.9i2,9 35~2i1A6 52.4i5,4 43.0i040 44~4i2A6 38~4i13A6 28.0i942 21-1i040
PP-EL2N-EH 439477 582154 575141 559459 614505 555122 49.016s 50.7+3.0 46.111.9
PP-EL2N-HE 377424 369413 372421 495441 505444 51.6442 39.0412 42.64127 42.7465
PP-EL2N-HH 516;65 528181 50.3i4A4 609;21 593*:!:46 57.0i2A7 52.8i1‘5 51.3i442 46.4i3‘0

Table 2: BERT out-of-distribution performance: We showcase the Macro-F1 Scores of models trained on original (i.e.,
unpruned) and pruned CMSB train data and tested on EXIST, EDOS and Hatecheck datasets. The pruning rates indicate the
amount of training data that was removed from the CMSB data before the model was trained. The rows correspond to different
selection methods. IU denotes Informed Undersampling, PP stands for Proportional Pruning, H = Hard, E = Easy. We performed
Wilcoxon test on the Macro F1-Scores and marked with color (Yellow and Lavender for PVI and EL2N) and stars those scores
which were statistically significant higher than the F1 score computed with the unpruned data (see row 1), with p-values below
the significance level (o« = 0.05). The results show that EL2N leads to more statistical significant improvements than PVI,
submodular maximization and random pruning. Pruning the hard instances based on EL2N leads to performance gain across
EXIST and EDOS but does not carry over to Hatecheck (Sexism). Moreover, we also observe that proportionally pruning the
easy sexist and hard non-sexist examples (based on EL2N and PVI) leads to better generalization across EDOS and EXIST

datasets.

from both classes.

4.2.3 Submodular Maximization

Submodular maximization operates at the represen-
tation level. Hence, we first extract embeddings
by pooling from the last hidden layer of each of
the fine-tuned BERT models across 5 runs. We
then perform submodular maximization based data
selection on each of the extracted embeddings, and
construct the corresponding subsets. We then fur-
ther fine-tune BERT classifiers on these subsets
and results are averaged across in-distribution and
out-of-distribution tests. We model the selection
problem as a Facility Location problem and use
Lazier-than-Lazy-Greedy strategy (Mirzasoleiman
et al., 2014), implemented in the PRISM package
(Kothawade et al., 2022b). Figure 2 (Appendix
A.3) visualizes dataset distributions before and af-
ter selection using UMAP (Mclnnes et al., 2020)
for dimensionality reduction.

4.3 Classification Experiments

We focus on BERT and RoBERTa models be-
cause they are widely used in subjective NLP tasks
such as hate speech detection, where they have

Acronym Full Form

IU-inf_score-H

Informed Undersampling-
inf_score(PVI or EL2N)-
Hard

Informed Undersampling-
inf_score(PVI or EL2N)-

IU-inf_score-E

Easy
PP-inf_score-EE  Proportional Pruning-
inf_score(PVI or EL2N)-
Easy-Easy
PP-inf_score-EH  Proportional Pruning-
inf_score(PVI or EL2N)-
Easy-Hard
PP-inf_score-HE  Proportional Pruning-
inf_score(PVI or EL2N)-
Hard-Easy
PP-inf_score-HH  Proportional Pruning-
inf_score(PVI or EL2N)-
Hard-Hard

Table 3: Index: We provide index for understanding the
acronyms used in our tables

demonstrated competitive performance compared
to LLMs (Zhang et al., 2023; Ziems et al., 2024;
Pan et al., 2024; Sariyanto et al., 2025). We train
the models on different subsets of the CMSB train-
ing dataset. Because of the dataset’s imbalance, we



Method 15% 30% 60 %
Unpruned (0%) 73.446.3

Random

random 69.2467 63.6495 H4.616.4
Submod. Max

max 71.1i4A4 54.8i9A3 47.7i244
Informed

IU-PVI-H 759426 69.6141 59.2452
IU-PVI-E 70.6453 66.3122 57.046.1
IU-EL2N-H 7824116 712415 64.2408
IU-EL2N-E 73.6159 61.0169 59.5171
Prop. Prune

PP-PVI-EE 70.71+56 46.6103 46.4100
PP-PVI-EH 76.9451  76.6132 723425
PP-PVI-HE 68.5477 672119 66.316.2
PP-PVI-HH 73.T+a5 7884106 71.7+1.0
PP-EL2N-EE 65.1414.1 52.9+106 49.716.6
PP-EL2N-EH 734456 782414 T1.741.7
PP-EL2N-HE 69.04+42 66.2436 69.6+4.0
PP-EL2N-HH 78.4%39 76.6445 703431

Table 4: BERT in-distribution performance: We show-
case the Macro-F1 Scores of models trained on original (i.e.,
unpruned) and pruned CMSB train data and test on CMSB
hold-out data. We perform Wilcoxon test on the Macro F1-
Scores and mark and color scores (Yellow and Lavender for
PVI and EL2N and stars) which were statistically significant
higher than the F1 score of the unpruned data (see row 1)
with p-values below the significance level (a« = 0.05). We
observe statistically significant performance gains on pruning
hard sexist and hard non-sexist data points based on PVI and
EL2N. For all other pruning types we don’t see any statisti-
cally significant gains.

split it into train and test sets (70/30) using strati-
fied sampling. For comparing the performance of
the classifiers trained on the CMSB (Train split)
and several pruned variants of this data, we use the
Macro F1-Score.

5 Results

This section presents the results of our pruning ex-
periments and analyzes the relationship between
dataset shortcuts and Influence Scores. Interested
readers can refer to Section A.4 for RoBERTa re-
sults. For convenience we also refer the readers to
Table 3 to facilitate understanding of the tables.

5.1 Proportional Pruning

By proportionally pruning 15% to 30% of hard-
to-classify instances from both classes (sexist and
non-sexist), using either PVI or EL2N scores,
we achieve statistically significant performance
improvements both in-distribution and out-of-

distribution (see Table 2) test datasets. This is
the only method that consistently improves perfor-
mance, with gains observed on the CMSB test split
as well as on the EXIST and EDOS datasets. The
qualitative analysis reveals that hard-to-classify
sexist instances often contain spelling mistakes or
lack contextual information, while hard-to-classify
non-sexist instances are often minimal-edit coun-
terfactuals (see examples in Tables 10 and 11). Our
case study suggests that PVI and EL2N help identi-
fying such cases.

Additionally, we observe that pruning easy-
to-classify sexist instances based on PVI and
EL2N scores, along with hard-to-classify non-
sexist instances yields statistically significant per-
formance improvements on the out-of-distribution
datasets (EXIST and EDOS). The qualitative analy-
sis on dataset shortcuts shows that especially sexist
easy-to-classify and non-sexist hard-to-classify in-
stances contain shortcuts (see Tables 9 and 10).

It is interesting to note, that in both cases we see
that pruning hard-to-classify non-sexist (majority)
instances is a promising strategy. We observe that
these instances are often minimal-edit counterfactu-
als and contain shortcuts that are highly correlated
with the sexist class. Removing such instances
encourages class separation. As with previous ex-
periments, we find no statistically significant im-
provements on HateCheck. This can potentially
be explained by the size and nature of this dataset
that consists of handcrafted examples to test hate
speech detection systems.

5.2 Informed Undersampling

When working with imbalanced datasets, under-
sampling the majority class can be a viable strategy
for improving model performance. In this study,
we investigate the effectiveness of informed under-
sampling of the majority class (i.e., the non-sexist
class) in enhancing classification outcomes. Specif-
ically, we selectively remove instances that are ei-
ther particularly easy or particularly hard to classify
from the non-sexist class. As shown in Tables 2
and 4, undersampling up to 15% of hard-to-classify
non-sexist instances, identified using EL2N scores,
improves the generalizability of the classifier. This
improvement is statistically significant for out-of-
distribution performance on the EXIST and EDOS
datasets. While we also observe mean performance
gains on the in-distribution CMSB test split and
the HateCheck(Sexism) benchmark, these improve-
ments are not statistically significant. Undersam-



Subtree Examples Mut. Inf. Maj. Label
@ a girl, her husband, a lady, the home, a female, a wife, a women, female rappers 0.0045 Sexist
female, women, girl, girls, career, proper, physical, mens 0.0020 Sexist
@ than men, than women, to men, for sex, by men, to women, with women, and children 0.0020 Sexist
e take care, be permitted, being leered, more easily, hear girls, stay home, be cooked 0.0014 Sexist
sexual, male, football, most, instant, greater, special 0.0014 Sexist
e women should, men are, girls should, men should, women have, boys should, women do 0.0011 Sexist

Table 5: Dataset Shortcuts in CMSB (Training Split): The table contains the six subtree roots with the most discriminative
patterns based on Mutual Information. For example, we observe that subtree identified by non-terminal node 29 is responsible
for nouns and adjectives that are correlated with the sexist class. On the other hand subtree with non-terminal node 8 consists of

assertive phrases that are correlated with the sexist class.

pling beyond 15% leads to performance degrada-
tion on both in-distribution and out-of-distribution
datasets.

These findings support our observation that hard-
to-classify non-sexist instances should be removed
to increase performance. Our results further high-
light that EL2N is a more effective influence score
than PVI for guiding undersampling from a major-
ity class. As discussed in Section 3.2, EL2N is a
margin-based score. Removing instances with high
EL2N scores effectively removes instances that lie
close to the model’s decision boundary, thereby
increasing class separation (Sorscher et al., 2023).

5.3 Qualitative Analysis and Dataset
Shortcuts

We identify grammar-based syntactic patterns
strongly associated with the sexist class, particu-
larly constructions involving gendered nouns (e.g.,
women) paired with model or assertive verbs (e.g.,
women should). The interested reader can refer to
Table 5 where specific examples are given. Analy-
sis of PVI and EL2N score distributions (see Fig-
ure 1) reveals that most shortcut-laden instances
are “easy” with PVI scores above 1.68 and EL2N
scores below 0.77, and are correctly classified.
This suggests that models leverage such patterns
during fine-tuning to generalize on the minority
class (see examples in Table 9).

Interestingly, we also find shortcut-laden in-
stances among the hard-to-classify non-sexist in-
stances. The qualitative analysis of the non-
sexist instances reveals that the hardest-to-classify
instances contain lexical or syntactic features
(e.g., gendered terms) resembling those found in
shortcut-containing sexist instances. These in-

stances exhibit negative PVI and high EL2N scores
(with a mean and variance of —1.394(. g25 for PVI
and 0.931¢.03 for EL2N) and are typically pruned
when hard-to-classify non-sexist instances are re-
moved (see examples in Table 10). Rather than
attributing these examples to label noise, we con-
ducted a deeper analysis and found that they are
minimal-edit counterfactuals—created by retaining
gendered terms while modifying the text to flip its
label. This method of generating counterfactuals
has been criticized in the past by Howard et al.
(2022); Joshi and He (2022), as such examples
provide models with insufficient inductive biases
during fine-tuning.

This suggests that combining pruning methods
based on Influence Scores with shortcut induction
methods is a promising direction to improve the
quality of training data for machine learning mod-
els, while at the same time ensuring data efficiency.

5.4 Submodular Maximization

We don’t observe statistically significant gains from
submodular maximization-based core-set selection
across pruning rates. As mentioned in Section 3.3,
submodular maximization operates at the repre-
sentation level, selecting instances by prioritizing
semantic diversity while discarding those that are
semantically similar (Krause and Golovin, 2014;
Renduchintala et al., 2023) (see Appendix A.3). In
our dataset, the majority of sexist instances con-
tain common patterns that yield similar represen-
tations after fine-tuning a classifier. As noted in
the previous section and shown visually in Figure
1, the pre-trained models leverage shortcuts dur-
ing fine-tuning that affect the learnability of a data
point. So selecting a diverse core-set leads to re-



moval of such instances at high pruning rates, this
explains why submodular maximization underper-
forms compared to our informed pruning strategies
based on learnability metrics or Influence Scores.

6 Conclusion

Prior research has highlighted concerns regarding
the quality of datasets used to study harmful online
communication, particularly due to the prevalence
of spurious correlations that hinder model gener-
alization. In this work, we present a case study
that examines the impact of various data selection
strategies on the composition of training data and
assess how these modifications influence model
performance. Our results indicate that data prun-
ing based on EL2N scores consistently yields the
most substantial improvements. As a margin-based
metric, EL2N identifies instances near the model’s
decision boundary; removing instances with high
EL2N values enhances class separation and con-
tributes to more robust learning (Sorscher et al.,
2023). Furthermore, we observe that proportionally
pruning difficult instances from both majority and
minority classes using PVI and EL2N scores leads
to improved performance on both in-distribution
and out-of-distribution test sets.

We also explored whether data selection strate-
gies help mitigate spurious correlations arising
from dataset shortcuts. Notably, we observe that
models rely on these shortcuts during fine-tuning.
Specially easy-to-classify sexist instances and hard-
to-classify non-sexist instances contain shortcuts.
Pruning these instances to some extent leads to
performance increases. Pruning hard-to-classify
instances is in general a promising strategy also
when shortcuts are not present.

7 Limitations

This study presents a empirical case study that is
limited to one specific dataset that has been de-
signed to cover different dimensions of sexism and
avoid spurious correlations by introducing coun-
terfactuals. It further focuses on sexism towards
men and women. Future research should investi-
gate whether our findings extend to other datasets
and other forms of gender-based discrimination and
harmful language detection more broadly.

In addition, while the experiments show that

! Although improvements on HateCheck are not statisti-
cally significant—likely due to the dataset’s limited size—the
observed trend remains consistent.

pruning based on Influence Scores (PVI and EL2N)
can improve out-of-distribution performance, this
approach involves important trade-offs. Pruning
reduces training data diversity and may remove sub-
tle or rare instances of sexism that are essential for
developing nuanced classifiers. Our primary focus
was on performance improvement across datasets
collected for a singular task like sexism by extract-
ing informative subsets. Future work should look
into how such scores can be used in selecting data
points for contrastive learning which is a method
widely used in the realm of representation engineer-
ing when adapting models to imbalanced datasets
(Gunel et al., 2021; Kim et al., 2022; Park et al.,
2024; Madani et al., 2025).

While this study has exclusively focused on sex-
ism detection and has applied learnability measures
on a counterfactually augmented dataset with im-
proved annotations, future work should also investi-
gate how learnability metrics aid in identifying text
where difficult negatives reflect natural ambiguity,
sarcasm, or context rather than synthetic edits.

Moreover, while this work focuses on the tech-
nical performance and generalization of classifiers,
future work should explore ethical and social im-
plications of data reduction, for example by using
fairness metrics.

8 [Ethics Statement

This work addresses the challenge of detecting sex-
ism in social media text by proposing a framework
that analyzes learning dynamics to better under-
stand how models learn from highly subjective,
user-generated datasets. Using these insights, we
develop a robust sexism classifier that generalizes
well across different datasets. Our framework can
also aid practitioners in evaluating and improving
their own datasets.

Examples in Appendix A.5 illustrate how our
quality metrics help identify problematic instances
that may need moderator or annotator review. We
believe this case study serves as a proof-of-concept
for the development of robust, data-efficient sys-
tems for harmful language detection, while at the
same time enabling identification of data points
that require further intervention.
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A Appendix
A.1 Model Settings

We use the BERT model variant bert-base-cased”
and the AdamW optimizer (Loshchilov and Hutter,
2019) with the hyperparameter settings listed in
Appendix A.2 in Table 6. The number of epochs
is set to 5, based on two considerations. First,
prior research on imbalanced datasets has shown
learning plateaus after first 5 epochs while fine-
tuning BERT family of models (Tédnzer et al., 2022).
Second, prior research suggests that it is usual
for EL2N-based pruning methods isolate easy in-
stances within 5 epochs of training (Sorscher et al.,
2023; Anand et al., 2023).

A.2 Hyperparameter Settings

This is the hyperparameter settings we use through-
out our experiments. All our experiments were run
on one 20GB partition of an NVIDIA A100 GPU.

Hyperparameter Value
Learning Rate le-6
Epochs 5
Scheduler Linear
Batch Size 32

Table 6: Hyperparameter settings.

A.3 Submodular Maximization

Submodular Maximization refers to a family of
methods designed to select an informative sub-
set—often referred to as a core-set (Sener and
Savarese, 2018)—from a larger superset. In our

2google-bert/bert-base-cased

use case, we aim to select a diverse core-set by
designing a selection algorithm that operates at the
embedding level, identifying a group of data points
that maintains both the diversity and representative-
ness of the original dataset (Krause and Golovin,
2014; Kothawade et al., 2021, 2022a). In this ap-
pendix, we provide a brief introduction to Submod-
ular Optimization, with a focus on Submodular
Maximization-based subset selection (Krause and
Golovin, 2014). We first define the concept of
submodularity, and then introduce the notion of
submodular gain, which underpins our submodular
data selection baseline. After that we provide the
intuition behind Facility Location problem that has
been used to model the data selection problem.

A.3.1 Submodularity

Submodularity is a property of functions that work
on finite set. A set function can be defined as
f :2Y — R that assign each subset S C V a
value of f(S). The V in question is the superset
also called a ground set consisting of finite number
of elements. Also f(¢) = 0 which implies that the
function on an empty set carries no value.

A set function f is submodular if for every
A,B C V and e € V\B the following 2 equa-
tions holds:

A(e|A) > A(e|B) 3)
and forevery A, B C V,

fANB)+ f(AUB) < f(A)+ f(B) &

The equations A.3.1 and A.3.1 helps us in under-
standing the concept of Submodular Maximization.
Equation A.3.1 essentially implies that if we have
already obtained a subset A consisting of a set of
values, including another value from B\ A does
not lead to any benefit. This implies that the sub-
modular set obtained exhibit diminishing returns
property. We now give an intuition of the reason
behind modeling the subset selection problem (by
designing an intervention on the embedding level).

Submodular Gain For a set function f : 2V —
R, S C V and e € V, we define the submodular
gain of f at S with respectto e A¢(e|S) = f(SU

e) — f(9).
A.3.2 Facility Location

Facility Location (Krause and Golovin, 2014; Ren-
duchintala et al., 2023) is a submodular function
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Figure 2: Distribution of data points from both the sexist and non-sexist classes before and after applying submodular
maximization for subset selection. The left plot shows the original data distribution; the right plot shows the distribution
after selecting 1,000 diverse and representative samples using model-generated representations and a lazier-than-lazy greedy
optimization. This illustrates how submodular maximization leads to more diverse and representative subset by intervening at the

representation level.

(we can also call it a mathematical model) which is
very similar to k-medoids clustering and is defined
as

fro(A) = Z maxjeaKi; %)
iev

And the subset selection problem then becomes
Sy = argmargcy.s|—,frr(S). From the equa-
tions it is clear that the problem of selecting a sub-
set which is diverse and representative of the super-
set is a combinatorially explosive problem which is
NP-hard. But how does the selection of diverse sub-
set happen? The answer lies in Equation A.3.2. A
closer inspection of the submodular objective func-
tion reveals that every data point—regardless of
whether it is an outlier or part of a cluster—has an
equal opportunity to be included in the selected sub-
set. To facilitate this property, a family of greedy-
based optimization algorithms has been developed.
Among the most recent and efficient is the Lazier-
than-Lazy Greedy algorithm proposed by (Mirza-
soleiman et al., 2014).

These optimizers are designed to select a sub-
set that is not only near-optimal but also maintains
the diversity and representativeness of the original
dataset. In Figure 2, we present a graphical visual-
ization of 1,000 data points sampled from our train-
ing set using submodular maximization. The plots
demonstrate that the algorithm effectively main-
tains diversity across both sexist and non-sexist
classes.

A.4 Generalization to RoOBERTa

RoBERTa(Liu et al., 2019) is a robust encoder
based pre-trained model belonging to BERT fam-
ily with more parameters, different tokenizer (Byte
Pair Encoding)(Sennrich et al., 2016) with differ-
ent pre-training tokens and objectives. We ran the
same experiments on RoBERTa and show the re-
sults in Tables 8 and 7. We observe that in case
of EXIST and EDOS out-of-distribution datasets,

RoBERTa’s performance mimics that of BERT
across pruning rates of 15% in case of proportion-
ally pruning the easy to classify sexist data points
and hard to classify non-sexist data points. In case
of pruning hard sexist instances and hard non-
sexist instances, as evident from Table 7 RoBERTa
model also performs well on pruning 15% and
30% data from the in-distribution dataset in case of
EXIST and on pruning 15% of the same training
dataset in case of EDOS. In case of Hatecheck, as
is the case for BERT, we don’t observe statistically
significant gain or loss in performance. Moreover
RoBERTa also performs well on in-distribution test
data compared to BERT and all the other prun-
ing strategies does not lead to statistically signif-
icant gain or drop in performance across differ-
ent pruning strategies. This can be attributed to
RoBERT2’s robust tokenization and its ability to
memorize datasets (Zheng and Jiang, 2022; Car-
lini et al., 2023). Another reason why there is
a difference between BERT and RoBERTa is be-
cause of their respective inductive biases. Differ-
ent pre-training corpus and objectives enables a



Method EXIST EDOS Hatecheck

15% 30% 60% 15% 30% 60% 15% 30% 60%
Unpruned (0%) 48.540.4 60.540.2 55.142.3
Random
random 475429 42.6441 343100 60.041.9 55.8+61 43.040.0 56.0+1.7 449437 21.1400
Submod. Max.
max 45.5i143 35.7i2,3 34.3i0A0 53-9i5.6 46.5i547 43.1i0,0 52.7i3.4 27.811.1 21~1i0.0
Informed
[U-PVI-H 64.4%07 65.6%04 578400 593402 547106 39.0+44 548104 483402 4564002
IU—PVI—E 47.5i0,7 45~7i28 34.3i0A0 60.8i02 59-1i647 43.1i0A1 55.0i0A5 53.2i6A1 21.1i0‘0
IU-EL2N-H 64.5%05 65.5502 57.4109 59.7+02 53.7+0s 36.8420 547103 48.6+07 45.8+0.9
IU-EL2N-E 48.44107 432422 34.3+00 60.4406 581429 43.0400 559416 5H3.3+40 21.140.0
Prop. Prune
PP-PVI-EE 479490 404449 343100 H7.9426 52.5477 43.1100 56.2415 40.01155 21.1400
PP-PVI-EH 59.4%,; 64.1%,5 65.7103 617504 59.6:107 5ddi1o 562105 549400  49.411 3
PP-PVI-HE 47-3i1.3 45~6i048 40~2i1.9 60~5i0.6 59-6i044 54.41344 55-1i1.5 54~9i045 47.7i745
PP-PVI-HH 54.0%009 61.7%h04 64.8405 61.5%0, 60.6101 579101 56.0411 54.8104 50.710s
PP-EL2N-EE 478417 40.2442 343100 585430 56.24208 43.1101 552446 422489 21.1400
PP-EL2N-EH 56.5%0.6 64.5%09 64.84109 62.0%02 59.6101 55.1i23 55.9410 54liss  50.2404
PP-EL2N-HE 48.3i1,1 45-4i1.9 39.8i28 60.0i0,5 58.6i045 53.6i5.1 56.4114 53.5i4,0 45.6i12_5
PP-EL2N-HH 54.8% 97 61.2%09 653106 613555 60.5105 574104 5594158 558105 50.84156

Table 7: RoBERTa out-of-distribution performance: We showcase the Macro-F1 Scores of models trained on original (i.e.
unpruned) and pruned CMSB train data and tested on EXIST, EDOS and Hatecheck datasets. The pruning rates (second row)
indicate the amount of training data that was removed from the CMSB data before the model was trained. The rows correspond
to different selection methods. We have shortened informed_undersampling (inf. samp.) and proportional_pruning (prop. prune)
for convenience. We perform Wilcoxon test on the Macro F1-Scores and mark and color scores (Yellow and Lavender for PVI
and EL2N and stars) which were statistically significant higher than the F1 score of the unpruned data (see row 1) with p-values
below the significance level (ov = 0.05). Our results show that undersampling the hard instances does not lead to statistically
significant performance gains in case of EDOS and HateCheck(Sexism). Moreover, we also observe that proportionally pruning
the easy sexist and hard non-sexist examples (based on EL2N and PVI) leads to better generalization across EDOS and EXIST

datasets.

model to acquire different set of inductive biases
(Warstadt et al., 2020; Kwok et al., 2024), thus
affecting how it learns from a dataset during fine-
tuning. However, proportional pruning strategies
on in-distribution training data (PP-inf_score-EH
and PP-inf score-HH, where inf score stands for
either PVI or EL2N) does aid RoBERTa in gen-
eralizing across EXIST and EDOS datasets even
though the percentage where they show generaliza-
tion is different. Our result also showcases that we
can fine-tune bigger models with much less data
but of higher quality and informativeness to retain
or improve performance in both in-distribution and
out-of-distribution settings which is the central as-
pect of coreset selection (Sener and Savarese, 2018;
Zheng et al., 2023; Dharmasiri et al., 2025).

A.5 Pruned Instances

In this section, we present examples of instances
pruned by our strategies. We observe that both PVI
and EL2N scores effectively identify and filter out

instances containing shortcuts.Especially, hard-to-
classify non-sexist (majority) and easy-to-classify
sexist (minority) class contain shortcuts. Many of
the more challenging sexist examples are implicit,
contain spelling errors, or include hashtags (e.g.,
#mkr, #FemFreeFriday) that require additional con-
textual understanding for the model to interpret
correctly. As discussed in Section 3, instances with
shortcuts similar to those found in easier-to-classify
sexist examples were often minimal-edit counter-
factuals. Representative examples are shown in
Table 10.

A.6 Results for Higher Pruning Rates

We also showcase more results for pruning rates
from 15% to 60% in Tables 13, 14, 15 and 16.
From the Tables we do observe that performance
across all the pruning strategies decreases as we
prune more data from our in-distribution training
dataset.



Method 15% 30% 60%

Unpruned (0%) 82.040.2

Random

random 80.9407 76.9454 46.410.0
Submod. Max

max 75. 7404 49.0435 46.4400
Informed

IU-PVI-H 78.7+0.15 772441027 62.6411.7
IU-PVI-E 81.5404 804413 46.9103%
IU-EL2N-H 78.510.3 71.8402 61.9403
IU-EL2N-E 81.7+0.4 79.9413 46.410.0
Prop. Prune

PP-PVI-EE 81.810.3 66.8416.6 47.241.3
PP-PVI-EH 81.240.2 78.6103 73.2+1.7
PP-PVI-HE 81.940.2 81.7401 77.6+35
PP-PVI-HH 80.8+0.4 79.44+01  75.040.2
PP-EL2N-EE 81.7+0.3 734479 46.7105

PP-EL2N-EH 81.145.6 78.8+02 723403
PP-EL2N-HE 81.940.2 81.7T105 744199
PP-EL2N-HH 8l.140.2  79.540.2 74.6+05

Table 8: RoBERTa in-distribution performance: We show-
case the Macro-F1 Scores of models trained on original (i.e.,
unpruned) and pruned CMSB train data and test on CMSB
hold-out data. As with BERT we also perform Wilcoxon test
on the F1-Scores and find no statistical improvement across
any pruning strategies based on our chosen significance level.
However pruning both the easy sexist and easy non-sexist data
points from the training data does lead to a drop in perfor-
mance at higher pruning rate of 60%. Unlike BERT we see
all the other pruning strategies ROBERTa performs similar rel-
ative to the performance on fine-tuning on the whole dataset.
Although performance does drop at high pruning rate of 60%
across all the pruning strategies.



Text Gold PVI EL2N  Shortcut
Men use physical contact as a request for sex sexist  2.637  0.388 Yes
Women have an obligation to uphold modesty in dress sexist  2.634  0.389 Yes
Women are inferior to men in their cognitive ability sexist  2.634  0.390 Yes
Women are more vulnerable than men are sexist  2.631  0.392 Yes
Men are not sexually satisfied with any behavior other than intercourse sexist  2.630  0.392 Yes
Compared to women, men have many undesirable qualities sexist  2.629  0.393 Yes
Women are more easily influenced than men are sexist  2.625  0.396 Yes
Women seem to be inherently less capable than men of logical and scientific ~ sexist 2.625  0.396 Yes
thinking
Men are superior to women in intelligence sexist  2.623  0.398 Yes
Women are more devout individuals than men are sexist  2.623  0.397 Yes
Table 9: Top 10 easy sexist instances based on PVI and EL2N scores.
Text Gold PVI EL2N Shortcuts
Men are as conceited about their appearance as women are non-sexist -1.642 1.011 Yes
On the average, women are as intelligent as men non-sexist -1.634 1.007 Yes
Women should be prepared to oppose men in order to obtain equal status non-sexist -1.630 1.007 Yes
Women have the right to decide for themselves what is proper in feminine non-sexist -1.630 1.007 Yes
dress
Women are as interested in sex as men are non-sexist -1.629 1.002 Yes
Men are as submissive as women are non-sexist -1.615 1.001 Yes
Women have the right to compete with men in every sphere of activity non-sexist -1.611 1.003 Yes
Women should be allowed the same sexual freedom as men non-sexist -1.611 1.002 Yes
Women should be free to express themselves sexually non-sexist -1.598  0.998 Yes
Men are just as easily influenced by others as women are non-sexist -1.597 0.998 Yes

Table 10: Top 10 hard non-sexist instances based on PVI and EL2N scores.

Text Gold PVI EL2N Shortcut
KAT IS A FUCKING CUNT #mkr sexist -2.292 1.377 No
Kat you’re a fkn ass #mkr sexist -2.272 1.376 No
Really bitch really? Get on the runway and back in the kitchen #MKR2015 sexist -2.245 1.375 No
#MKR

They starting to act and look like a couple of B grade hookers to me #MKR sexist -2.127 1.374 No
#IDontNeedFeminism #FemFreeFriday [URL] sexist -2.045 1.371 No
Seeing as you two think this is a modelling competition and not a cooking sexist -2.042 1.367 No
competition, I give you two a score of -10 for your looks. #MKR

RT MENTION2838 xbox’s were designed for gamers and make up was sexist -1.992 1.368 No
designed for beauticians, get the idea #promise #lol

MENTION1047 MENTION1497 pls don’t the Trump womrn supporters sexist -1.978 1.364 No
paid or no r so much hotter :) [URL]

I wonder which of the blonde ones screwed Colin to get that score? Probably sexist -1.937 1.366 No
both. #mkr

MENTION4117 the stay at home mums of this country need to turn off the sexist -1.822 1.361 No

tele and go do some d.. [URL]

Table 11: Top 10 hard sexist instances based on PVI and EL2N scores.



Text Gold PVI EL2N Shortcuts

Seems Eva & Debra think they are michelin star chefs after their instant non-sexist 0.144  0.033 No
restaurant result. Don’t quit your day jobs just yet #mkr

Just when they thought it was safe to go back into the kitchen... Instant non-sexist 0.144 0.033 No
restaurant redemption round! #mkr

JFC Kat do you have NO morals???? Carnt #mkr2015 #mkr non-sexist 0.144  0.033 No
MENTION2122 with spinich — who doesn’t love spinich! #mkr non-sexist 0.144  0.033 No
A 7! Colin dipping his end in! #mkr non-sexist 0.144  0.033 No
With all this smashing it and nailing it, Bunnings needs to come on board as non-sexist 0.144  0.033 No
a sponsor with sausage-sizzle challenge #mkr

Just so the results, why would the other teams not up the score to drop kick non-sexist 0.144  0.034 No
Captain Salty and her first mate beta? #mkr

Kat and Andre are the crud on the bottom of a saucepan when you burn your non-sexist 0.144 0.034 No
food #mkr

A 1? You are real arseholes. #mkr non-sexist 0.143  0.034 No
Sick of the word Sassy!! #mkr non-sexist 0.143  0.034 No

Table 12: Top 10 easy non-sexist instances based on PVI and EL2N scores.

Method 15% 30% 40 % 50% 60 %
Unpruned (0%) 73.4+16.3

Random

random 69.246.7 63.6195 H7.2+10.3 H7.116.0 5H4.616.4
Submod. Max

max 71.114.4 54.8i9_3 60.219.4 56.4i7,8 47~7i2.4
Informed

IU-PVI-H 759426 69.6441 70.0435 64.640.9 59.2452
IU-PVI-E 70.6453 66.3422 65.2492 64.8410 57.046.1
IU-EL2N-H 782416 712415 694410 633403 64.2408
IU-EL2N-E 73.6459 61.0469 69.6147 69.0439 59.5471
Prop. Prune

PP-PVI-EE 70.7+5.6 46.6403 479429 47.6423 46.440.0
PP-PVI-EH 76.9451  76.6432 749432 T4.7416 72.3+25
PP-PVI-HE 68.5477 672419 65.8499 64.11825 66.316.2
PP-PVI-HH 73.7T+a5 T78.8%056 76.22.0 70.6431 71.7410

PP-EL2N-EE 65.14+14.1 52.9+106 51.84107 47.3417 49.7465
PP-EL2N-EH 73~4i5A6 78.2i1A4 76.7i1A2 74.8i2A9 71~7i1A7
PP-EL2N-HE 69.0142 66.2i8_6 66.5i5_0 63.715.1 69.6i4_0
PP-EL2N-HH 784439 76.64a5 T4Tio7 T2.7132 T0.313.1

Table 13: BERT in-distribution performance: We showcase the Macro-F1 Scores of models trained on original (i.e., unpruned)
and pruned CMSB train data and test on CMSB hold-out data. We perform Wilcoxon test on the Macro F1-Scores and mark and
color scores (Yellow and Lavender for PVI and EL2N and stars) which were statistically significant higher than the F1 score
of the unpruned data (see row 1) with p-values below the significance level (« = 0.05). We observe statistically significant
performance gains on pruning hard sexist and hard non-sexist data points based on PVI and EL2N. For all other pruning types
we don’t see any statistically significant gains.



Method 15% 30% 40% 50% 60 %

Unpruned (0%) 82.040.2

Random

random 80.9407 76.9454 60.1154 46.5100 46.4100
Submod. Max

max 75.7+0.4 49.0435 4644100 46.5+00 46.4400
Informed

IU-PVI-H 78 7T+0.15 7241027 674104 64.3105 62.611.7
IU-PVI-E 81.54+0.4 80.441.3 70.8495 60.41140 46.91038
IU-EL2N-H 78.540.3 71.8402 682107 642107 619403
IU—ELZN—E 81.7;!:0.4 7949;|:1,3 67~2j:13.8 57.2:{:10,3 46.410_0
Prop. Prune

PP-PVI-EE 81.840.3 66.8+16.6 63.24151 56.2+120 472413
PP-PVI-EH 81.240.2 78.640.3 76.540.2 74.0+0.4 T73.241.7
PP-PVI-HE 81.9+0.2 81.7+01 81.8402 812407 T77.6435
PP-PVI-HH 80.8404 794401 782102 T76.5102 75.040.2
PP-EL2N-EE 81.7+0.3 7344179 69.21923 5521110 46.7105

PP-EL2N-EH 81.1156 78.840.2 76.240.2 741402 723403
PP-EL2N-HE 819102 81.7105 81.3+01 81l.1+0.3 7441909
PP-EL2N-HH 81.140.2 79.540.2 78.440.2 76.7+0.4 T4.610.5

Table 14: RoBERTa in-distribution performance: We showcase the Macro-F1 Scores of models trained on original (i.e.,
unpruned) and pruned CMSB train data and test on CMSB hold-out data. As with BERT we also perform Wilcoxon test on the
F1-Scores and find no statistical improvement across any pruning strategies based on our chosen significance level. However
pruning both the easy sexist and easy non-sexist data points from the training data does lead to a drop in performance as we
gradually increase the pruning rate from 40% to 60%. Unlike BERT we see all the other pruning strategies ROBERTa performs
similar relative to the performance on fine-tuning on the whole dataset. Although performance does drop at high pruning rate of
60% across all the pruning strategies.
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