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Abstract
Recent MLLMs have demonstrated strong vi-
sual understanding and reasoning after large-
scale multimodal pre-training. However,
instruction-tuning is typically text-driven with
limited visual supervision, leading to signifi-
cant visual forgetting and degradation of pre-
trained visual knowledge. Existing fine-tuning
and continual learning methods compress vi-
sual representations and emphasize task align-
ment over visual retention, failing to address
this challenge. We present a novel perspec-
tive using effective rank to quantify the loss of
visual representation richness, framing visual
forgetting as excessive compression under the
information bottleneck principle. To address
this, we propose modality-decoupled gradient
descent (MDGD), which regulates gradient up-
dates to preserve the effective rank of visual fea-
tures and explicitly disentangles visual learning
from task-specific alignment. We further in-
troduce a memory-efficient fine-tuning variant
using gradient masking for parameter-efficient
adaptation. Extensive experiments show that
MDGD effectively mitigates visual forgetting
across downstream tasks and models, maintain-
ing pre-trained visual knowledge while support-
ing strong task adaptation.

1 Introduction
Multimodal large language models (MLLMs) en-
hanced visual understanding and reasoning by pre-
training on large-scale multimodal datasets with
comprehensive visual descriptions that integrate
textual and visual knowledge (Liu et al., 2024b;
Yao et al., 2024; Li et al., 2023b; Bai et al., 2023;
Liu et al., 2024d; Wu et al., 2024d). These models
achieve strong performance across various vision-
language tasks, such as visual question answering
(Jin et al., 2024; Wu et al., 2025b), multimodal rea-
soning (Zhang et al., 2024; Jiang et al., 2024b; Yan
et al., 2024), multimodal recognition (Shenoy et al.,
2024; Wu et al., 2024d), and personalized multi-
modality (Wu et al., 2024b, 2025a; Huang et al.,

(a) LLaVA on OKVQA (b) LLaVA on POPE

(c) MiniCPM on PathVQA (d) MiniCPM on POPE

Figure 1: The top-10 image tokens with the highest ef-
fective ranks on OKVQA and POPE encoded by LLaVA,
and PathVQA and POPE encoded by MiniCPM. We
compare pretrained, finetuned, and MDGD-finetuned
models. Effective rank (Wei et al., 2024) quantifies rep-
resentation richness, which show that MDGD preserves
higher effective rank, mitigating visual forgetting.

2025). However, adapting pre-trained MLLMs
to downstream tasks via instruction-tuning (Wu
et al., 2024a; Li et al., 2024, 2023a; Panagopoulou
et al., 2023; Liu et al., 2024d) presents a critical
challenge of visual forgetting. Unlike pre-training,
where models receive rich visual-text alignment,
instruction-tuning is often text-driven with limited
direct visual supervision. This shift in training fo-
cus leads to the degradation of pre-trained visual
encoding (Zhou et al., 2024; Niu et al., 2024; Wu
et al., 2024a; Ko et al., 2023), negatively impacting
model generalizability across downstream tasks
that require strong visual knowledge (Bai et al.,
2024; Huang et al., 2024). Addressing this chal-
lenge is essential for ensuring MLLMs retain their
visual capabilities while aligning with new tasks
efficiently.

While several approaches have attempted to mit-
igate catastrophic forgetting in neural networks
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through direct fine-tuning and continual learning
methods (Shi et al., 2024; Wu et al., 2024e; Zhu
et al., 2024; Zheng et al., 2024), these methods of-
ten overlook the unique challenge of preserving vi-
sual knowledge in multimodal large language mod-
els (MLLMs). Directly fine-tuning MLLMs on new
tasks often leads to overfitting to textual instruc-
tions while inadvertently suppressing visual repre-
sentations (Zhai et al., 2023). Existing continual
learning strategies, such as regularization and re-
play methods, tend to focus on retaining language-
based knowledge, neglecting the trade-off between
compressing visual representations and aligning
them with task-specific instructions (Zhou et al.,
2024; Niu et al., 2024; Wu et al., 2024a; Ko et al.,
2023), leading to the degradation of pre-trained vi-
sual knowledge. Task-orthogonal gradient descent
techniques have shown promise in disentangling
gradients for multi-task optimization. However,
their practical application in MLLMs poses unique
challenges. MLLMs are pre-trained on vast and het-
erogeneous multimodal datasets (Liu et al., 2024b;
Li et al., 2023b; Bai et al., 2023), where it is chal-
lenging to isolate task-specific gradients, causing
the components critical for visual understanding to
become entangled with other features.

To gain a fundamental view of the challenge of
visual knowledge forgetting in MLLM instruction
tuning, we adopt an information bottleneck (IB)
perspective that characterizes the trade-off between
retaining input information and ensuring output
predictiveness (Tishby et al., 2000). To investi-
gate the degradation of crucial pre-trained visual
knowledge, we introduce a novel perspective that
leverages effective rank to quantify the richness
of the encoded visual representation from MLLMs.
Specifically, we illustrate the visual forgetting prob-
lem in Figure 1, where we observe a consistent
effective rank reduction problem caused by MLLM
instruction tuning. Based on this view, we propose
a modality-decoupled gradient descent (MDGD)
method, which disentangles the optimization of vi-
sual understanding from task-specific alignment,
MDGD regulates gradient updates to maintain the
effective rank of visual representations compared
with pre-trained MLLMs, while mitigating the over-
compression effects described by the information
bottleneck. Intuitively, visual forgetting occurs due
to the shift from rich multimodal pre-training to
instruction-tuning, where text-based supervision
dominates without direct visual supervision. By ex-
plicitly decoupling the task-specific alignment with

visual representation learning, MDGD preserves
expressive and robust visual features. To further
improve efficiency in instruction-tuning, we intro-
duce a memory-efficient fine-tuning strategy us-
ing gradient masking, which selectively updates a
subset of model parameters for parameter-efficient
fine-tuning (PEFT). This approach reduces compu-
tational overhead while ensuring that crucial pre-
trained visual representations are retained.

We summarize our contributions as follows:

• We analyze the visual knowledge forgetting
problem in MLLM instruction tuning and
frame the problem through the lens of effec-
tive rank and information bottleneck theory.

• We propose MDGD, which decouples visual
optimization from task-specific alignment to
preserve visual representations and introduces
a PEFT variant MDGD-GM to reduce compu-
tational overhead through gradient masking.

• We conduct comprehensive experiments on
various MLLMs and downstream tasks,
demonstrating that MDGD effectively miti-
gates visual forgetting while enabling strong
adaptation to new tasks.

1.1 Visual Knowledge Forgetting in MLLMs

Catastrophic forgetting, where a model loses pre-
vious knowledge while learning new tasks, is a
major challenge in continual learning (Wang et al.,
2023). This problem is now widely recognized in
LLMs and MLLMs (Wu et al., 2024e; Luo et al.,
2023; Zhai et al., 2023). Although various methods,
including fine-tuning, task-orthogonal gradient de-
scent, knowledge distillation, and replay, have been
adapted to mitigate forgetting (Shi et al., 2024;
Wu et al., 2024e; Zhu et al., 2024; Zheng et al.,
2024), they often fail to preserve rich visual fea-
tures. Fine-tuning on new tasks tends to overfit text
and suppress visual information, while parameter-
efficient methods like LoRA also suffer from for-
getting (Fawi, 2024; Liu et al., 2024c). Model
Tailor (Zhu et al., 2024) adapts the LLM backbone
but does not address visual knowledge forgetting,
which can lead to hallucination or degraded general-
ization (Zhai et al., 2023). In contrast, our approach
synchronizes the training of the visual encoder and
LLM, preserving pre-trained visual knowledge dur-
ing instruction tuning.
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1.2 Information Theory in LLMs
The Information Bottleneck (IB) principle (Tishby
et al., 2000) has been used in LLMs to compress in-
put while retaining task-relevant information (Delé-
tang et al., 2023; Valmeekam et al., 2023; Wei
et al., 2024; Wu et al., 2022). Prior works use
IB to extract robust features (Zhang et al., 2022;
Wu et al., 2024c) and enable feature attribution (Li
et al., 2022; Jiang et al., 2020), but these focus on
language models, not multimodal settings (Yang
et al., 2025). Existing information-theoretic trans-
fer learning methods (Tseng et al., 2024; Wu et al.,
2024c; Ling et al., 2024) also do not address the
unique challenges of MLLMs, where modalities
are deeply entangled. Our method instead uses
effective rank to measure and counteract visual
representation compression. The proposed MDGD
explicitly decouples visual learning from task align-
ment, going beyond previous IB-based approaches.

2 Preliminary

Task Definition. Given an MLLM ⇡✓ and
instruction-tuning dataset D, the image prompt
I 2 ⌦ is encoded by a visual encoder f into
a sequence of M visual tokens f(I) = Xv =
(xv1, x

v
2, . . . , x

v
M ). During instruction tuning, the

textual instructions T 2 D are tokenized as X l =
(xl1, x

l
2, . . . , x

l
N ) using the tokenizer of the back-

bone LLM, which is querying the MLLM to gen-
erate textual responses conditioned on the multi-
modal inputs,

ŷk ⇠ ⇡✓(· | Xv, X l, y<k). (1)

Therefore, the learning objective of visual
instruction-tuning for K samples is to maximize
the average log-likelihood of the ground truth an-
swer tokens y = (y1, y2, . . . , yT ) of each sample,

Lvl(✓) = �
TX

t=1

log ⇡✓
⇣
yt | Xv, X l, y<t

⌘
, (2)

where multimodal instructions Xv and X l both
serve as generation conditions.

An Information Bottleneck Perspective on Vi-
sual Knowledge Forgetting. In multimodal mod-
els, the information bottleneck (Mai et al., 2022)
(IB) framework provides a powerful lens to un-
derstand how representations are formed. In our
setting, the IB principle seeks a representation Z
that is maximally informative about the output y

while discarding irrelevant details from the inputs.
For an MLLM that processes visual inputs Xv and
textual inputs X l, a full IB objective might take the
form:

min
✓

Lvision
IB (✓) = �I(y;Z) + � I(Xv;Z). (3)

where I(·; ·) denotes mutual information and �
controls the trade-off between predictive power
and compression. This formulation explicitly high-
lights the risk of discarding visual details when the
model is optimized primarily to predict y. Based on
the information bottleneck view, we further analyze
the visual forgetting problem in Appendix C.

Effective Rank as a Measure of Representation
Richness. To quantify the information content re-
tained in a representation, we use the effective rank
metric (Roy and Vetterli, 2007). Given a represen-
tation matrix Z whose singular values are {�i}, the
effective rank is defined as:

erank(Z) = exp

 
�
X

i

pi log pi

!
, (4)

where pi = �i/
P

j �j . This measure, based on
the entropy of the singular value distribution, cap-
tures the “richness” or intrinsic dimensionality of
Z. A higher effective rank indicates that the repre-
sentation spans a larger subspace, whereas a lower
effective rank implies that the representation has
been overly compressed.

3 MDGD: Modality-Decoupled Gradient
Regularization and Descent

Motivated by the visual forgetting problem caused
by the degradation of multimodal encoding in
Eq. (12), we introduce a modality-decoupling gra-
dient regularization (MDGD) to approximate or-
thogonal gradients between visual understanding
drift and downstream task optimization. Specifi-
cally, leveraging modality-decoupled gradients ḡ✓
and ḡ� derived from the current MLLM and a pre-
trained MLLM respectively, we propose a gradi-
ent regularization term g̃✓ for more efficient multi-
modal instruction tuning, which promotes the align-
ment of downstream tasks while mitigating visual
forgetting (Zhu et al., 2024). Since MDGD requires
the estimation of parameter gradients, we could
not directly apply parameter-efficient fine-tuning
methods (e.g., LoRA (Hu et al., 2021)). Thus, we
alternatively formulate the regularization as a gra-
dient mask Mg̃✓ , which allows efficient fine-tuning
only on a subset of masked model parameters.
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3.1 Modality Decoupling
Based on the information bottleneck objective in
Eq. (3), the objective encourages the model to
maximize I(y;Z) while compressing I(Xv;Z)
(Tishby et al., 2000; Alemi et al., 2016). In
practice, this compression may discard useful
visual details, leading to visual forgetting. To
mitigate such compression and preserve the pre-
trained visual knowledge, we follow the KL diver-
gence loss DKL

⇣
µ�(Xv)

���⇡✓(Xv)
⌘

to constrain
the current model’s visual representation ⇡✓(Xv)
to remain close to the pre-trained distribution
µ�(Xv), thereby preserving the mutual informa-
tion I(Xv;Z) that would otherwise be reduced by
the compression (Hinton, 2015; Lopez et al., 2018).
However, since MLLMs cannot directly track the
distributions of image tokens, we instead introduce
an auxiliary loss function

Lv(�, ✓) = kµ(Xv|�)� ⇡(Xv|✓)k1, (5)

which approximates the KL divergence loss (Zhu
et al., 2022b, 2017) by penalizing discrepancies
between the pre-trained visual representation and
that obtained during instruction tuning.

In the MLLM instruction tuning, the visual out-
put tokens (e.g., {zvlk }Mk=1) are encoded as latent
representations. Such visual encoding cannot be
directly supervised by any learning objective but is
learned through textual gradient propagation of the
negative log-likelihood loss in downstream tasks.
To approximate the visual optimization direction,
we derive the gradients of Lv(�, ✓) for both the
pre-trained MLLM ⇡� and the current MLLM ⇡✓:

h� = r�Lv(�) = �(�, ✓) ·r�µ(X
v|�),

h✓ = r✓Lv(✓) = ��(�, ✓) ·r✓⇡(X
v|✓),

where �(�, ✓) = sign (µ(Xv|�)� ⇡(Xv|✓)). In-
tuitively, when the MLLM’s visual understanding
drift causes visual forgetting, we further derive the
orthogonal task gradients ḡ� and ḡ✓:

ḡ� = r�Lvl(�)�
r�Lvl(�)>h�
kh�k2

· h�, (6)

ḡ✓ = r✓Lvl(✓)�
r✓Lvl(✓)>h✓
kh✓k2

· h✓, (7)

which enables modality decoupling of the down-
stream task loss gradient in Eq.(2) orthogonal to
the visual understanding drift for the pretrained
MLLM ḡ� ? h� and current MLLM ḡ✓ ? h✓.

Algorithm 1 MDGD: Modality Decoupled Gradi-
ents Descent

1: Inputs: Pre-trained MLLM µ�, current
MLLM ⇡✓, instruction-tuning dataset D, and
learning rate ⌘

2: Outputs: The optimized model weights of ⇡✓
3: Initialize ⇡✓  µ�

4: for Receive minibatch Di ⇢ D do
5: Calculate Lvl(�) of µ�, based on Eq.(2);
6: Calculate Lvl(✓) of ⇡✓, based on Eq.(2);
7: Extract visual encodings of µ(Xv|�);
8: Extract visual encodings of ⇡(Xv|✓);
9: Calculate Lv(�, ✓), based on Eq.(5);

10: Derive orthogonal task gradients ḡ� and ḡ✓,
according to Eq.(6);

11: if Parameter-efficient fine-tuning then
12: Calculate Mg̃✓ ,based on Eq.(10);
13: Update the model following Eq.(11).
14: else
15: Calculate g̃✓, based on Eq.(8);
16: Update the model following Eq.(9).
17: end if
18: end for

3.2 Regularized Gradient Descent
The auxiliary loss in Eq. (5) preserves the visual
representation at a distribution level via the feature
alignment auxiliary loss in Eq. (5). However, the in-
formation bottleneck framework indicates that the
gradient component compressing I(Xv;Z) (i.e.,
r✓I(Xv;Z)), can harm visual preservation by re-
ducing the effective rank of the features (Achille
and Soatto, 2018; Lee et al., 2021).

To address this compression-induced drift, we
incorporate an orthogonal gradient as a regular-
ize. Motivated by multi-task orthogonal gradient
optimization (Yu et al., 2020; Zhu et al., 2022a;
Dong et al., 2022), we leverage the gradient ḡ�
from the pre-trained model µ�, which reflects the
accumulated visual drift and approximates a global
orthogonal learning effect in the downstream task.
We then project the current model’s gradient onto
this direction:

g̃✓ =
ḡ>✓ ḡ�
kḡ�k2

· ḡ�. (8)

In addition, to prevent discrepancies between
the regularization and task gradients, we include
the feature alignment auxiliary loss (Eq. (5)) in the
overall objective. The final parameter update is:

⇡✓  ⇡✓ �r✓Lvl(✓)�r✓Lv(✓)� g̃✓. (9)
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3.3 Enabling Parameter-efficient Fine-tuning
of MDGD via Gradient Masking

Parameter-efficient fine-tuning (PEFT) methods,
such as adapters (Houlsby et al., 2019) and LoRA
(Hu et al., 2021), aim to reduce the computational
cost and memory usage when fine-tuning models
on downstream tasks under practical constraints
(Han et al., 2024). However, due to the require-
ment of directly estimating gradient directions on
the pre-trained model parameters, MDGD cannot
be directly applied to these PEFT methods, which
introduce additional model parameters whose gra-
dients are separate from the original model weights.

To address this challenge, we propose a variant,
MDGD-GM, by formulating the gradient regular-
ization term in Eq. (8) as gradient masking that
selects model weights with efficient gradient direc-
tions. Specifically, we define it as

Mg̃✓ = 1

⇢
ḡ>✓ ḡ�
kḡ�kkḡ✓k

� T↵

�
, (10)

where T↵ is determined by a percentile ↵ of train-
able parameters with the highest similarity scores
between ḡ✓ and ḡ�. Consequently, the optimization
in Eq. (9) is reformulated as

⇡✓  ⇡✓ �Mg̃✓ · (r✓Lvl(✓) +r✓Lv(✓)) . (11)

We summarize and illustrate the optimization pro-
cess of MDGD and MDGD-GM in Algorithm 1.

4 Experiments

Datasets To evaluate catastrophic forgetting, we
follow the setup of Zhu et al. (2024) and consider
two models: LLaVA-1.5 (7B) and MiniCPM-V-2.0
(2.8B). For each model, we use a set of pre-trained
tasks (including VQAv2, GQA, VizWiz, TextVQA,
POPE, and MM-Bench) and fine-tuning tasks on
previously unseen datasets (such as Flickr30k,
OKVQA, TextCaps, and PathVQA). Full details on
dataset composition are provided in the appendix.
Baselines We compare our approach against sev-
eral baselines: standard fine-tuning following Zhu
et al. (2024), LoRA-based fine-tuning (Hu et al.,
2021), and Model Tailor (Zhu et al., 2024). For
Model Tailor, we report the original results from
their paper for comparison.
Implementation Details All experiments use the
official Huggingface implementations of LLaVA-
1.5 and MiniCPM-V-2.0, with LoRA adapters
where applicable. Models are fine-tuned using

BFloat16 precision on 2 NVIDIA A100 80GB
GPUs. We include fine-grained implementation
details in Appendix B.
LLM Usage In this paper, LLMs are only used for
refining the writing of natural language.

4.1 Comparison Results
LLaVA-1.5 adapts better to downstream tasks
but is more prone to visual forgetting. We study
the visual forgetting problem on the LLaVA-1.5
MLLM, and report performance comparison re-
sults in Table 1. We observe that the pre-trained
LLaVA enables efficient instruction tuning on tar-
get tasks, where the zero-shot performance is near
zero. When the model is fine-tuned on the im-
age caption task, Flickr30K, which largely dif-
fers from the pre-trained tasks of visual question-
answering, the model can learn a degraded multi-
modal representation, which causes visual forget-
ting in its projected visual representation space
(in Section C). Fine-tuning on visual question-
answering task OKVQA, which is similar to the
pre-trained tasks, can also lead to MLLM’s visual
understanding drift, due to the limited image-text
pairs existing in the downstream task.
MiniCPM-V-2.0 also experiences visual for-
getting while limited in downstream task im-
provements. To validate the observation on a
smaller MLLM, we report the comparison results
of MiniCPM-V-2.0 with 2.8B model parameters
in Table 2. We observe that compared with the
LLaVA MLLM, MiniCPM suffers from less promi-
nent visual forgetting. We attribute this observa-
tion to MiniCPM learning a more compact and
constrained visual representation space during pre-
training, causing the visual representations of tar-
get task images to be less aligned with those of
the pre-trained MLLM. Consequently, MiniCPM
exhibits limited improvement in downstream tasks,
as its restricted ability to acquire additional visual
knowledge leads to ineffective instruction tuning.
MDGD prevents visual forgetting while main-
taining downstream task improvements. By
employing MDGD in MLLM instruction tuning,
we observe the LLaVA’s average performance
drops on pre-trained tasks when fine-tuned on
OKVQA and also improves when fine-tuned on
Flickr30K, which demonstrates the efficiency of
MDGD in mitigating visual forgetting. For the
smaller MLLM, MiniCPM, MDGD achieves com-
parable fine-tuning improvements with direct fine-
tuning, while completely eliminating visual for-

2286



Method #Params Pre-trained tasks Target task Metrics

GQA VizWiz SQA TextVQA POPE MMBench Flickr30k Avg Hscore

Zero-shot – 61.94 50.00 66.80 58.27 85.90 64.30 3.5 55.82 59.86

Fine-tune 1.2B 56.26 44.45 28.34 38.98 38.40 50.56 78.82 47.97 45.26
LoRA 29M 17.74 40.63 5.38 30.48 2.40 9.55 64.18 24.33 20.49
Model Tailor 273M 52.49 42.28 67.15 43.89 82.88 63.40 75.40 61.07 59.85

MDGD 1.2B 67.71 48.18 69.05 57.32 85.12 65.43 73.47 66.61 66.03
w/o visual align 1.2B 57.64 36.95 53.96 32.84 30.43 56.66 65.58 47.72 46.19

MDGD-GM 124M 69.89 51.22 65.87 58.18 84.39 66.42 64.18 65.74 65.86

Method #Params Pre-trained tasks Target task Metrics

GQA VizWiz SQA TextVQA POPE MMBench OKVQA Avg Hscore

Zero-shot – 61.94 50.00 66.80 58.27 85.90 64.30 0.14 55.34 59.58

Fine-tune 1.2B 62.98 40.59 59.84 48.38 71.42 51.98 69.10 57.76 56.79
LoRA 29M 63.44 41.61 51.29 48.02 75.27 37.31 71.46 55.49 54.12
Model Tailor 273M 60.39 46.49 69.51 54.88 85.44 63.32 38.10 59.73 61.48

MDGD 1.2B 66.55 42.72 64.60 52.54 85.17 61.73 62.29 62.23 62.22
w/o visual align 1.2B 66.39 39.89 60.19 52.40 84.92 62.97 62.39 61.31 61.22

MDGD-GM 124M 66.02 43.97 67.91 52.80 84.70 63.97 61.04 62.92 63.07

Table 1: Performance on various pre-trained tasks of LLaVA-1.5 models fine-tuned on Flickr30K and OKVQA. We
report the best performance for each task in a bold font while the second best performance underlined.

getting in the pre-trained tasks. MDGD and its
variants consistently achieve the best average per-
formance for both MLLMs, demonstrating its great
potential for incremental learning on individual
downstream tasks.
Comparison with baseline methods. Table 1
shows that MDGD consistently outperforms both
LoRA fine-tuning and Model Tailor (Zhu et al.,
2024) on LLaVA-1.5. LoRA suffers from visual
forgetting due to projecting multimodal features
into lower-rank spaces, especially on Flickr30K
and OKVQA. Model Tailor, while effective for
anti-forgetting in LLMs, is less robust for MLLMs
and remains sensitive to the target dataset, per-
forming better on Flickr30K than OKVQA. In con-
trast, MDGD achieves higher average scores and
H-scores across datasets. In Table 2, MDGD im-
proves average performance on MiniCPM tasks,
reducing visual forgetting by 2.43% and 1.83% on
PathVQA and TextCaps, respectively.

4.2 Ablation Study

Ablation study on visual alignment. We compare
MDGD with its two variants, MDGD w/o visual
align and MDGD-GM. MDGD w/o visual align
enables MDGD without including visual represen-
tation loss Lv(�, ✓) Eq.(5), to understand the effect
of directly optimizing to reduce the visual represen-
tation discrepancy between the current model and
pre-trained model. We observe that MDGD w/o
visual align maintains relatively comparable per-

formance to MDGD on OKVQA and PathQA, due
to the reduced need for visual representation adap-
tation in such visual question-answering tasks. In
contrast, tasks like image captioning on Flickr30K
and TextCaps benefit from feature alignment reg-
ularization, which directly mitigates visual under-
standing drift in the MLLM.
Ablation study on gradient masking. The other
variant, MDGD-GM, leverages gradient masking to
enable parameter-efficient fine-tuning (PEFT). We
observe the PEFT variant of MDGD consistently
achieves comparable performance across all tasks
and backbone MLLMs, which only fine-tunes a
subset of 10% original MLLM parameters used for
direct fine-tuning and original MDGD. Different
from conventional PEFT methods such as adapters,
MDGD and its variants do not introduce additional
parameters to the original model architecture, en-
abling incremental learning in an online setting
(Maltoni and Lomonaco, 2019; Gao et al., 2023).

4.3 Representation Learning Analysis

T-SNE Analysis on Visual Representation To
analyze the learning of visual and multimodal rep-
resentation distributions in MLLMs, we create T-
SNE (Van der Maaten and Hinton, 2008) plots to
visualize the feature distributions extracted from
pre-trained MLLMs, as well as MLLMs after stan-
dard fine-tuning and MDGD We illustrate the dis-
tributions of the multimodal features zvl extracted
from the last token of the multimodal instruction
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Method #Params Pre-trained tasks Target task Metrics

VizWiz A-OKVQA OKVQA TextVQA IconQA POPE MMBench PathVQA Avg Hscore

Zero-shot - 55.27 79.39 64.86 77.98 79.01 88.93 70.98 5.44 65.23 10.04

Fine-tune 517M 52.91 76.94 59.06 58.34 76.96 89.60 70.16 11.04 61.88 18.74
LoRA 35M 52.95 76.24 64.45 77.18 77.80 88.08 67.47 15.03 64.90 24.41

MDGD 517M 55.73 78.25 64.33 77.54 79.45 89.19 71.94 9.09 65.69 15.97
w/o visual align 517M 54.92 78.52 64.17 77.42 79.37 89.10 70.96 8.49 65.37 15.03

MDGD-GM 52M 55.04 78.78 64.31 77.78 79.10 88.76 70.98 5.72 65.06 10.52

Method #Params Pre-trained tasks Target task Metrics

VizWiz A-OKVQA OKVQA TextVQA IconQA POPE MMBench TextCaps Avg Hscore

Zero-shot - 55.27 79.39 64.86 77.98 79.01 88.93 70.98 15.77 66.52 25.50

Fine-tune 517M 52.03 77.73 59.16 67.24 78.67 88.20 71.42 33.85 66.04 44.76
LoRA 35M 53.30 78.17 63.99 77.68 78.28 87.31 69.23 32.41 67.55 43.80

MDGD 517M 55.17 78.17 63.67 76.08 79.40 89.11 71.58 28.90 67.76 40.52
w/o visual align 517M 51.35 78.08 63.06 76.48 78.99 88.98 71.30 25.93 66.77 37.35

MDGD-GM 52M 55.04 78.43 65.26 78.08 79.65 88.93 71.88 29.14 68.30 40.85

Table 2: Performance on various pre-trained tasks of MiniCPM-V2.5 models fine-tuned on PathVQA and TextCaps.
We report the best performance for each task in a bold font while the second best performance underlined.

(a) zvl on PathVQA (b) ⇡(Xv) on PathVQA (c) zvl on TextCaps (d) ⇡(Xv) on TextCaps

Figure 2: T-SNE plots of the distribution of extracted visual ⇡(Xv) and multimodal zvl representations from
pre-trained MiniCPM, and models with direct fine-tuning and MDGD on PathVQA and TextCaps.

tokens, and the visual features ⇡✓(Xv) extracted
from the last token of the input image tokens. We
observe a consistent visual understanding drift in
the MLLMs’ visual representation spaces after
standard fine-tuning on PathVQA and TextCaps
with MiniCPM (Figure 2b and 2d). By employ-
ing MDGD to mitigate visual forgetting, we ob-
serve that visual understanding drift is effectively
reduced, allowing the fine-tuned MLLM to retain
pre-trained visual capabilities.

We further observe a distributional discrepancy
in the multimodal representation zvl of LLaVA
(Figures 5a and 5c) between MDGD and the pre-
trained MLLM. This discrepancy arises from the
alignment of the MLLM to the target task through
multimodal instructions, demonstrating effective
adaptation to the downstream task of the LLaVA
model. In addition, we also observe such multi-
modal distribution discrepancy reduces in a smaller
MLLM, MiniCPM. This observation aligns with
our findings on MiniCPM in Section 4.1, where
we noted limited effects in model adaptation to
downstream tasks. However, applying MDGD to

MiniCPM mitigates visual forgetting by preventing
degradation of both image and multimodal encod-
ings into lower-rank representation spaces.

Effective Rank Analysis on Visual Representa-
tion To quantitatively analyze the visual forgetting
problem (in Section C) described in Eq. (12), we
calculate effective ranks of the visual representa-
tions extracted from the last hidden layer on the
position of image tokens in individual MLLMs. We
show the comparison results of LLaVA models in
Figure 4(a) and MiniCPM models in Figure 4(b).
We observe that with both the backbone models
of LLaVA and MiniCPM, directly fine-tuning the
pre-trained models on downstream tasks can lead
to a consistent reduction of effective ranks in visual
representations. Such observations validate the hy-
pothesis in Section C regarding the potential visual
forgetting problem in MLLM instruction tuning. In
addition, we can observe that MDGD achieves con-
sistent improvements in effective ranks compared
with the standard fine-tuning method for both back-
bone MLLMs across various pre-trained tasks. In
Figure 4(a), we observe that MDGD achieves com-
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Figure 3: Illustration of (a) the learning process of three methods based on task loss Lvl(�, ✓), (b) the average regu-
larized cosine similarity ḡ>

✓ ḡ�
kḡ�kkḡ✓k in Eq.(10) for gradient masking at varying ratios, and (c) the visual representation

loss Lv(�, ✓) in Eq.(5) for gradient masking at varying ratios ↵.

parable or even better effective ranks on pre-trained
tasks, compared with the pre-trained LLaVA model.
However, MDGD on MiniCPM in Figure 4(b) also
suffers from the visual representation degradation
problem, while MDGD consistently alleviates the
problem. Such observation suggests a higher risk
of visual forgetting in smaller-scale MLLMs.

(a) LLaVA models pretrained, finetuned, and fine-tuned with
MDGD

(b) MiniCPM models pretrained, finetuned, and fine-tuned
with MDGD

Figure 4: The effective rank comparison on individual
downstream fine-tuning datasets.

4.4 Sensitivity Study
We evaluate the learning curves of MDGD and
MDGD-GM compared with standard fine-tuning
in Figure 3(a), where we observe that MDGD
and MDGD-GM achieve comparable training ef-
ficiency compared with the standard fine-tuning
method. We also investigate the sensitivity of
gradient cosine similarity between ḡ✓ and ḡ� in
Figure 3(b) and the representation loss in Fig-

ure 3(c), with respect to the gradient masking ratio
in MDGD-GM. In Figure 3(b), we observe that
MDGD-GM with lower gradient masking ratios
can better align the modality-decoupled learning
gradients between the target model and the pre-
trained model, while MDGD-GM maintains over
70% alignment with 50% gradient masking. In
Figure 3(c), we show that MDGD-GM with 50%
gradient masking still effectively alleviates the vi-
sual representation degradation problem by reduc-
ing the visual representation discrepancy Lv, while
learning with a more active gradient can achieve
better alignment.

5 Conclusion

In this work, we addressed the challenge of vi-
sual forgetting in MLLMs during instruction tuning
by introducing a novel modality-decoupled gradi-
ent descent (MDGD) approach. MDGD disentan-
gles the gradient updates for visual representation
learning from task-specific alignment, thereby pre-
serving the effective rank of pre-trained visual fea-
tures and mitigating the over-compression effects
highlighted by the information bottleneck perspec-
tive. This decoupling enables MLLMs to retain
rich visual knowledge while adapting robustly to
new downstream tasks. Furthermore, our gradient
masking variant, MDGD-GM, enhances memory
efficiency and optimizes parameter usage, mak-
ing fine-tuning both practical and scalable. Exten-
sive experiments across various downstream tasks
and backbone models demonstrate that MDGD not
only effectively prevents visual forgetting but also
outperforms existing strategies in achieving bal-
anced multimodal representation learning and task
adaptation. Our findings underscore the impor-
tance of preserving visual representations during
instruction-tuning and offer a viable solution for
efficient and effective multimodal learning in real-
world scenarios.
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6 Limitation

In this work, we focus on MLLMs that process
multimodal instructions consisting solely of visual
and textual inputs. Given the limited availability
of MLLMs across other modalities, our primary
goal is to mitigate visual forgetting. However, our
modality-decoupling approach is generalizable to
other input modalities. Consistent with standard
practices, we limit the instructions to two input
modalities, though extending this to more diverse,
free-form multimodal inputs remains an avenue for
future research.
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A T-SNE Analysis on LLaVA-1.5 Model

In addition to Section 4.3, we further include the
T-SNE analysis on LLaVA-1.5 model. We ob-
serve a consistent visual understanding drift in the
MLLMs’ visual representation spaces after stan-
dard fine-tuning on Flickr30K and OKVQA with
LLaVA (Figure 5b and 5d).

B Implementation Details

Datasets To evaluate the effectiveness of MDGD
in mitigating catastrophic forgetting, we used two
models of different sizes. Our experimental design
follows the settings from the work of Zhu et al.
(2024). For each model, datasets were categorized
into two types: pre-trained tasks, which assess
the model’s ability to retain inherent knowledge
after fine-tuning, and fine-tuning tasks, consisting
of unseen datasets used to test adaptability. After
fine-tuning, we evaluated performance on both task
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(a) zvl on OKVQA (b) ⇡(Xv) on OKVQA (c) zvl on Fllickr30K (d) ⇡(Xv) on Fllickr30K

Figure 5: T-SNE plots of the distribution of extracted visual ⇡(Xv) and multimodal zvl representations from
pre-trained LLaVA-1.5, and models with direct fine-tuning and MDGD on OKVQA and Flickr30K.

types to measure forgetting and generalization. Be-
low, we detail the datasets used for each model.
LLaVA-1.5 (Vicuna-7B) (Liu et al., 2024a): This
model has 7 billion parameters. In line with Liu
et al. (2024a), we used the following datasets:

• Pre-trained Tasks: VQAv2 (Goyal et al.,
2017), GQA (Hudson and Manning, 2019),
VizWiz (Gurari et al., 2018), SQA (Lu et al.,
2022), TextVQA (Singh et al., 2019), POPE
(Li et al., 2023c), and MM-Bench (Liu et al.,
2023).

• Fine-tuning: Flickr30k (Young et al., 2014)
and OKVQA (Marino et al., 2019), which
were not encountered in the pre-training stage.

MiniCPM-V-2.0 (Yao et al., 2024): This model
has 2.8 billion parameters. We evaluated its perfor-
mance on:

• Pre-trained Tasks: VizWiz, OKVQA, A-
OKVQA (Schwenk et al., 2022), Text-VQA,
IconQA (Lu et al., 2021), POPE, and MM-
Bench.

• Fine-tuning: TextCaps (Sidorov et al., 2020)
and PathVQA (He et al., 2020), which were
not part of its pre-training exposure.

Baselines We compare our approach against sev-
eral baselines:

• Standard Fine-Tuning. For a fair compar-
ison, we follow the setting of Model-Tailor
(Zhu et al., 2024), where LLaVA-1.5 is fine-
tuned on the last 6 layers and its feature
adapter, with a total of 1.2B parameters.
MiniCPM is fine-tuned on the last 8 layers
and its feature resampler, with 517M parame-
ters.

• LoRA-based Fine-Tuning (Hu et al., 2021).
LoRA introduces low-rank matrices to update

only a small subset of parameters, reducing
memory consumption and computational cost.
In our experiments, LLaVA-1.5 and MiniCPM
are fine-tuned by modifying the query and key
projection layers within the attention mecha-
nism.

• Model Tailor (Zhu et al., 2024). This base-
line employs a hybrid strategy that mitigates
catastrophic forgetting by identifying and ad-
justing the most critical parameters for adap-
tation. It has been evaluated through exper-
iments on multimodal large language mod-
els (MLLMs). As the method is not open
source, we report only the original results of
the LLaVA-1.5 experiments provided in the
original paper as a baseline.

Implementation Details We use the official
Huggingface implementations of the LLaVA-1.5
and the MiniCPM-V-2.0 models and their LoRA
adapters. For model fine-tuning, we use BFloat16
precision for memory-efficient training. Exper-
iments are conducted using 2 NVIDIA A100-
SXM4-80GB GPUs.

C Visual Forgetting in MLLM
Instruction-tuning

Building on the IB objective Eq. (3) introduced in
Section 2, we examine how instruction tuning af-
fects the richness of visual representations. Let the
pre-trained MLLM induce a latent representation,

Z ⇠ p(· | Xv, X l),

where Z is is decomposed into modality-specific
components, Z = (Zv, Z l) with Zv captures the
visual features extracted from Xv, and Z l encap-
sulates the textual features from X l. Define the
pre-trained visual representation space as,

Zv
0 =

�
Zv
� : Z ⇠ p�(· | Xv), Xv 2 ⌦

 
.
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During instruction tuning, the model is optimized
primarily to predict the target y. As described
in Eq. (3), the IB objective introduces a trade-
off between retaining visual information I(Xv;Z)
and ensuring that Z remains predictive of y via
I(y;Z) (Jiang et al., 2024a). In practice, however,
instruction-tuning datasets are predominantly text-
driven; thus, the learned visual representation Zv

receives only indirect and often weaker supervi-
sion (Wang et al., 2024).

Let the tuned model’s latent representation be
Z✓ ⇠ p✓(· | Xv, X l), and denote the correspond-
ing visual representation space by,

Zv
✓ =

n
Zv
✓ : Z ⇠ p✓(· | Xv, X l), (Xv, X l) 2 D

o
,

where D is the instruction-tuning dataset. To mea-
sure the richness of the visual representation, we
employ the effective rank metric from Eq. (4). A
higher effective rank indicates that the represen-
tation spans a broader subspace, whereas a lower
effective rank signals more aggressive compres-
sion.

The Visual Forgetting Problem. During instruc-
tion tuning, the visual representation undergoes
significant compression as the model prioritizes
textual supervision. This reduction occurs because
the model effectively sacrifices part of I(Xv;Z)
to focus on I(y;Z), thereby reducing the effec-
tive dimensionality of the visual features. As a
result, the model progressively loses its ability to
retain and utilize rich visual information, leading
to a phenomenon we define as visual forgetting.
Empirically, in Figure 1 we observe,

erank(Zv
✓ ) < erank(Zv

0 ). (12)

This indicates that the tuned visual representation is
compressed relative to the pre-trained space, mak-
ing it harder for the model to leverage visual infor-
mation effectively. In RQ3 (Section 4.3), we vali-
date such empirical observations and demonstrate
that our method helps to preserve effective ranks in
the visual representation learning of MLLMs.
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