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Abstract

Recent advances in Multimodal Large Lan-
guage Models (MLLMs) have demonstrated
impressive capabilities across various vision-
language tasks. However, their reasoning abili-
ties in the multimodal symbolic music domain
remain largely unexplored. We introduce Wild-
Score, the first in-the-wild multimodal sym-
bolic music reasoning and analysis benchmark,
designed to evaluate MLLMs’ capacity to inter-
pret real-world music scores and answer com-
plex musicological queries. Each instance in
WildScore is sourced from genuine musical
compositions and accompanied by authentic
user-generated questions and discussions, cap-
turing the intricacies of practical music analy-
sis. To facilitate a comprehensive evaluation,
We propose a systematic taxonomy, comprising
both high-level and fine-grained musicological
ontologies. Furthermore, we frame complex
music reasoning as multiple-choice question
answering, enabling controlled and scalable as-
sessment of MLLMs’ symbolic music under-
standing. Empirical benchmarking of state-of-
the-art MLLMs on WildScore reveals intrigu-
ing patterns in their visual-symbolic reason-
ing, uncovering both promising directions and
persistent challenges for MLLMs in symbolic
music reasoning and analysis. We release the
dataset! and code?.

1 Introduction

Multimodal Large Language Models (MLLMs)
have recently advanced on visual question answer-
ing (Yan et al., 2024; Liu et al., 2023a), document
understanding (Luo et al., 2024; Zhu et al., 2024;
Wu et al., 2025d), visual navigation (Wu et al.,
2025a; Wang et al., 2025; Wu et al., 2024c¢), and
recommendation (Wu et al., 2024b; Huang et al.,

“These authors contributed equally to this work.

1https ://huggingface.co/datasets/GM77/
WildScore

2https://github.com/GaganVM/WildScore

2025). Despite these advances, the real-world ap-
plicability of MLLMs in symbolic music analysis
and reasoning remains underexplored. Symbolic
music reasoning uniquely combines dense visual
symbolism with rich, domain-specific semantics
(Yuan et al., 2024), posing challenges that extend
beyond conventional image-text benchmarks (Fu
et al., 2024; Yu et al., 2023). While there has been
some limited work in evaluating LL.Ms on symbolic
music tasks (Yuan et al., 2024), such work has only
considered unimodal LLMs, where the symbolic
music has been converted to text, on pedagogical-
style test questions, which calls into question such
benchmarks’ ability to evaluate diverse reasoning
performance. On the other hand, existing symbolic
music datasets, like MusicNet (Thickstun et al.,
2017a) and MAESTRO (Hawthorne et al., 2019),
focus on aligned transcription or generation based
on specific model architectures, which makes them
unaligned with reasoning tasks or interfacing with
larger text-based models. Unlike prior benchmarks
that focus on unimodal audio analysis, OMR, or
symbolic transcription, there remains no standard-
ized evaluation for complex reasoning and analysis
over symbolic music based on multimodal context,
where understanding often hinges on multi-step de-
duction, ambiguity resolution, and integration of
notation, structure, and expressive intent (Czajka
et al., 2024a).

In this work, we present WildScore, the first
multimodal symbolic music reasoning benchmark
constructed from in-the-wild data. WildScore
comprises real music scores by actual composers,
paired with user-generated questions and discus-
sions sourced from public forums. Many real-
world queries require integrating several musical
reasoning steps, including identifying notational
symbols, interpreting harmonic progressions, and
contextualizing expressive markings, which de-
mand the need for MLLMs that can perform com-
positional and context-aware multimodal reason-
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ing. This collection reflects the authentic diversity
and complexity of symbolic music interpretation
as it occurs in real-world discourse, and demands
nuanced reasoning about notation, structure, and
musical intent (Xu et al., 2024; Surana et al., 2022).

To enable a comprehensive and interpretable
evaluation, we introduce a systematic taxonomy
that covers both broad and detailed facets of mu-
sic theory, including Harmony & Tonality, Rhythm
& Meter, Expression & Performance, Texture and
Form. This systematic taxonomy guides dataset
curation and provides fine-grained analysis of
MLLMSs’ strengths and limitations across musico-
logical concepts.

To overcome the inherent ambiguity and sub-
jectivity in open-ended musicological questions,
we further propose to formulate symbolic music
reasoning as a multiple-choice question answering
(QA) problem.

Each WildScore instance presents a score image,
an LLM-generated MCQ based on a real commu-
nity submission, and several plausible answer can-
didates derived from the post’s annotated ground
truth. We illustrate the overview of our dataset in
Figure 1. This figure displays the different high-
level categories and subcategories, highlighting the
range of musical topics and question types included
in WildScore.

This controlled QA formulation allows for rigor-
ous benchmarking, scalable annotation, and auto-
matic evaluation while maintaining the authenticity
of real-world musicological challenges.

Our empirical benchmarking of state-of-the-art
MLLMs on WildScore (see Section 4) reveals that
even widely used and popular models exhibit incon-
sistent accuracy across various musical reasoning
tasks. Although recent vision—language models
have demonstrated strong performance on promi-
nent multimodal benchmarks (Ishmam et al., 2025)
(Chen and Wu, 2024), they often are premature
when faced with the deep musical abstractions and
context-sensitive inferences required by real-world
score interpretation. These observations point to a
substantial gap that future multimodal models must
close in order to fully capture the complexity of
symbolic music analysis.

We summarize our contributions as follows:

* We introduce WildScore, the first in-the-
wild symbolic music reasoning benchmark,
grounded in real music scores and authentic

expert questions.

* We propose a systematic, multi-level taxon-
omy for musicological reasoning, supporting
comprehensive evaluation of MLLM:s.

* We formulate complex symbolic music rea-
soning as multiple-choice QA, enabling con-
trolled and scalable benchmarking.

* We conduct extensive empirical studies, pro-
viding the first insights into MLLMs’ sym-
bolic music reasoning capabilities and high-
lighting challenges for future research.

2 Related Work

2.1 Symbolic Music Understanding and
Benchmarks

Symbolic music understanding has traditionally
been evaluated using clean, structured datasets
such as MusicNet (Thickstun et al., 2017a),
NES-MDB (Donahue et al., 2018), and MAE-
STRO (Hawthorne et al., 2019). These datasets
align audio with symbolic formats to facilitate tasks
like transcription and generation. However, they
reflect highly curated environments, lacking the
variability, ambiguity, and informal nature of user-
generated content. Other symbolic corpora like
MusicScore (Lin et al., 2024) or Lakh MIDI (Raf-
fel, 2016) further extend coverage but remain either
score-centric or MIDI-based without real-world
contextual grounding. Recent efforts like Mu-
sicTheoryBench (Czajka et al., 2024b) introduce
theory-centric evaluations, but they rely on expert-
curated questions in controlled settings. WildScore
differs by grounding symbolic music analysis in
online discourse, incorporating informal reasoning
and context-dependent ambiguity from platforms
like Reddit (Reddit, 2024).

2.2 Optical Music Recognition (OMR)

Optical Music Recognition (OMR) aims to tran-
scribe printed or handwritten scores into machine-
readable symbolic formats. Traditional sys-
tems such as Audiveris (Audiveris, 2025) and
SmartScore (Musitek Corporation, 2024) focus on
improving transcription accuracy under controlled
input conditions. Surveys like Rebelo et al. (2012)
document the progress and limitations of OMR sys-
tems, especially in their failure to handle degraded
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Harmony & Tonality

Q: Why does the melody in the provided audio and sheet music sound like it
resolves on Eb, and what musical factors contribute to this perception?
A Option A: Final chord is a of
f6es 33 L gy Option B: Harmony featurt esolution
loe” atten

Chord Progressions

Modulation Patterns

Q: In the opening of Mozarts 17th piano concerto, specifically at bar 3, beat 2, there is a
movement from A o B. What s the purpose of this A note in the context of the melody
£+ and harmony? Consider whether it suggests a brief tonicisation, functions as a passing tone,
~ orserves another musical role, especially in comparison to similar harmonic devices in
Mozarts piano concerto No. 23.

Option A: A quirky, light-hearted passing tone within G maj

Option B: An unresolved suspension within G major

Q: Given the provided symbolic music image and the question Is F Major the correct key for
this? It doesnt sound major,which key best describes the piece, considering the use of A
major and A7 chords, the emphasis on D minor, and

the correction of accidentals from Db to C#

EUTEEs]  Option A: G major, chords suggest modulation
: Option B: D minor, indicated by A major and A7 chords

Rhythm & Meter

Q: How should a beginner count a melody in sheet music where
sixteenth notes are beamed to eighth notes and then to sixteenth
notes, as shown in the provided image?

Option A: Count only
Option B: All notes a

Q: In the context of leaming the piano piece Fade to Black by Metallica,
specifically referring to the treble clef in bar 64 and the bass clef in bar 65 as
shown in the provided image, how should one count the quarter note triplets in
bar 64 and the sixteenth note triplets in bar 65, considering the tempo and
thythmic complexity?

Texture

Orchestral Texture

Q:Considering the orchestration challenges presented by Bachs Prelude in C Major
from the Well Tempered Clavier for a woodwind quartet, including issues with
instrument range, balance, and idiomatic writing for keyboard, what is the most
effective approach to orchestrate this passage?

Option A: U
Option B: Us

. bassoon/oboe for ary
ass, clarinet/flute for arp

Polyphonic Texture

H o mop hon Ic TeXtu re Q: What is the correct musical term for a motif that alternates back to one
T - consistent note but changes notes in between, as exemplified by the right hand
el —| 72 cctvovons ForEi, i s common  Btoqu and Gl
music?
Option A: Tonic pedal
i

fm—{  Option 5 Podal po

Qils the 7-6 suspension invertible to a 9-10 suspension in the style of Bach fugues,
particularly in minor or major keys and in outer voices or two-part writing, as illustrated
in the provided image?

Option A: Yes
Option B: Ye:

s invertible in both minor and major keys
it only in outer voices.

D

\

Expression & Performance

Q: Considering the transcription of a thythm involving 16th rests, 8th notes,
and beams over rests as shown in the linked symbolic music images, which

approach is considered the clearest and most effective way to notate these
% thythms for readabilty and accurate performance?
Option A: L 8 ver rests
in

Option B: U

Q: In the clarinet and soprano saxophone parts of Nice Work if You Can Get It, a

—pe little half circle symbol appears above certain notes. Considering the style,
usage in jazz, and the professional recording where the effect sounds like a
== e = S bend, what does this symbol most likely indicate in the music notation?
=2 s Option A: Indic:

ight pitch variation

ch bend down and back up

Option B: Indic

Form

Q: In a musical piece with two 8-bar sections, each having repeat signs, where the first
section ends with Fine and the second ends with D.C. al Fine, how should the repeats be
treated when returning to the beginning after the D.C. al Fine instruction?

Option A: Play ABAA:
ABBA

cat only first section
Option B: Play AA epeats first two s

ections, then stop at Fine

Q: In the context of a fugue subject originally presented without a key signature but
exhibiting characteristics of G major (starting on G, standard do-re-mi opening, and
resolutions to notes of the G chord), what is the correct approach to writing the
answer part of the fugue?
Sp P kpisftaPIPrsELie|  Option A: Wiite a real answer in D preserving subject intervals
S Option B: Write 2 tonal answer in F preserving subject intervals

Figure 1: Example questions from our symbolic music benchmark dataset, illustrating the diversity of high-
level categories and subcategories included. For each of the five core categories—Harmony & Tonality (HT),
Rhythm & Meter (RM), Texture (Tx), Expression & Performance (EP), and Form (FM)—we present representative
samples spanning their respective subcategories. Each panel shows a sample multiple-choice question along with
corresponding answer choices, demonstrating the range and depth of musical concepts assessed in our benchmark.

or context-rich visual inputs. Recent approaches at-
tempt deep learning-based segmentation and classi-
fication (Tuggener et al., 2018; Pecina et al., 2017),
but the field still lacks benchmarks that demand
semantic or contextual reasoning. WildScore ex-
tends OMR beyond literal transcription by intro-
ducing tasks where score fragments must be inter-
preted in natural language conversations. Unlike
OMR, which primarily targets transcription accu-
racy, WildScore evaluates interpretive reasoning
that combines visual perception of notation with
higher-level musicological analysis in a QA setting.

2.3 Multimodal Reasoning with
Vision-Language Models

Multimodal Large Language Models (MLLMs)
like LLaVA (Liu et al., 2023a), BLIP-2 (Li et al.,
2023), and Qwen-VL (Bai et al.,, 2023) have
achieved strong performance on benchmarks such
as VQAV2 (Goyal et al., 2017) and COCO (Lin
et al., 2015), yet these existing benchmarks pre-
dominantly feature everyday scenes, charts, or doc-
uments and lack the formal structure and semantic

density found in symbolic music notation. Un-
like natural images instruction tuning (Liu et al.,
2023a; Wu et al., 2025¢, 2024a), music scores en-
code layered information through a specialized vi-
sual grammar, requiring models to integrate not just
visual recognition but also domain-specific reason-
ing across harmony, rhythm, form, and expression.
WildScore introduces symbolic music as a distinct
and underexplored multimodal reasoning domain.

While prior music-related multimodal bench-
marks focus on audio-language or audio-visual
tasks (Wu et al., 2025b,c), additional recent ef-
forts such as AIR-Bench (Yang et al.,, 2024),
MMAU (Sakshi et al., 2024), MMAR (Ma et al.,
2025), and EMOPIA (Hung et al., 2021) evaluate
multimodal models in the audio channel. These
are highly relevant for multimodal evaluation but
do not address the complexities of symbolic visual
music notation. By contrast, WildScore uniquely
targets symbolic score images as a structured, vi-
sually dense modality, requiring models to parse
notation and reason about harmony, rhythm, form,
and expression.
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Dataset Source Type Input Multi- Reasoning Category Real- Annotation Eval.
Type modal Diversity  world Type Format
Content
MusicTheory-
Bench Expert-curated Theory X v 2 X Manual Acc.
(Czajka et al., 2024b) MCQ
MAESTRO Curated . .
(Hawthorne et al., 2019) (Competition recs.) Audio X X 2 X Automatic Fl-score
MusicNet Curated .
(Thickstun et al., 2017b) (Classical recs.) ~ “udio X X N/A X Manual  Recall
NES-MDB Curated . .
(Donahue et al., 2018)  (Game Audio) Audio X X 11 X Automatic  N/A
MusicScore Curated .
(Lin et al., 2024) (Public Scores) Score v * 8 X Automatic  FID
image
corpus
Lakh MIDI In-the-wild .
(Raffel, 2016) (Web-MIDI) MIDI X X N/A v Automatic ~ N/A
WildScore g.:;lt_ll;le;lglld Musicological v v 5 core + v Manual + Acc.
MCQ 12 Auto-
subcats. mated

Table 1: Comparison of symbolic music datasets and benchmarks. WildScore uniquely combines multimodal
symbolic input, real-world musicological queries, and deep reasoning evaluation.

This positions WildScore as a necessary addi-
tion to the multimodal reasoning landscape, extend-
ing evaluation beyond natural images and audio
into the structured world of symbolic music. Rel-
ative to theory-only question sets (knowledge re-
call) and OMR (perception), WildScore spans both
knowledge-based tasks (e.g., rhythm counting) and
multi-step reasoning tasks (e.g., orchestration or
harmonic function in context), providing a bridge
task for the reasoning community.

3 WildScore

The aim of this study is to evaluate the visual con-
text understanding of Multimodal Large Language
Models (MLLMs) for symbolic musical score as
shown in Figure 2. To this end, we introduce Wild-
Score. In this section, we describe the dataset
details; Section 4 presents the evaluation of vi-
sion—language reasoning over symbolic musical
scores.

Our dataset creation process involves two dis-
tinct phases: (1) data collection (3.1), (2) multi-
modal filtering (3.2). Together, these phases en-
force sample relevance, symbol-image grounding,
and rigorous quality control, yielding a benchmark
that robustly evaluates MLLMs’ visual context un-
derstanding of symbolic music.

3.1 Data Collection

This benchmark is sourced from public question
posts on r/musictheory subreddit, covering discus-
sions and interactions spanning over a period of
ten-year period (2012-2022). This in-the-wild
sourcing yielded a user-generated benchmark, with
questions standardized into a canonical form for
consistent evaluation while preserving their orig-
inal intent. We extracted original submissions
along with their corresponding first-level com-
ments. Many submissions included embedded
score images, which we extracted as the visual
context for evaluation.

3.2 Multimodal Filtering

As an initial screen, we fine-tuned a YOLO
(Khanam and Hussain, 2024) based detector on
215 manually annotated images using Roboflow
(Dwyer et al., 2025), and then applied the detec-
tor to 4000 candidate images extracted from sub-
missions. Each selected image was paired with
the associated submission text and first-level com-
ments. To ensure clarity and meaningful commu-
nity engagement, we performed content and en-
gagement filtering. We excluded submissions ex-
ceeding 200 words and retained only those with
at least three first-level comments. This filtering
pipeline resulted in a refined dataset of 807 high-
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Community Submission
Collection

2

Multimodal Question
Generation

Benchmark Packaging & \
Evaluation

D2

r
@Redd it Thread Harvesting

Scraped 10 years of data (2012-2022)
v Targeted r/ musictheory

r
@ Ground Truth Extraction

Selected high-quality responses based on:
Score (Upvotes - Downvotes) of Comment Threads

@ Answer = Comment with the highest Reddit score

Grounded in: [ T Post title [ ] Post body () Top-level comments

N\ )

r
@ Benchmark Assembly

* Each example contains:
— Score image (symbolic notation)
— Natural-language question (MCQ)
— Candidate answers from Reddit comments
— Ground-truth label (Reddit upvotes + LLM tie-
breaking)

o1 o

1 oWOTE

rﬂ./,

@ MCQ Query Generation
questions
context

* Final questions refined for:

« Reformatted Reddit post content into natural-language
« Ensured questions captured the original user’s intent and musical

+ Refined question phrasing for consistency and interpretability

@ Modes of Operation
 Supports two evaluation settings:
— Multimodal (Image + Question)
— Text-only (Question without image, ablation)
ﬂ Used to assess the role of visual symbolic music

Clarity| Structure | to

music ing

@ Symbolic Score Filtering &
v Manually annotated 215 symbolic score images

 Trained YOLO (via Roboflow) to detect symbolic music content
@ Filtered ~2,000 image posts

Resulted in high-quality symbolic music images

@ Content and Engagement Filtering Q

X Removed
* Posts > 200 words
« Threads with <3 top-level comments

L Final output: ~1300 high-quality, multimodal threads

@ MCQ Type Categorization

Categorized MCQs into:

Filtered out:

VAN

* 5 high-level categories (e.g., Harmony, Form)
* 12 subcategories (e.g., Chord Progressions, Modulation)

* Employed LLM with structured prompts

Generic questions |[Non-music or off-topic content

&

scores in multimodal reasoning

@ Evaluation Protocol @
* Models are scored using MCQ accuracy
* Allows:
— Accuracy with & without image
— Analysis by model, input type, and different categories
and sub-categories
— Comparison across modalities

Include dardi

d scripts and
reproducible benchmarking

splits for

J \. J

Figure 2: Overview of the dataset construction pipeline, including Reddit post collection, music entity extraction,
query generation, and candidate retrieval.

quality examples.

Each dataset entry was then reformatted into
multiple-choice questions (MCQs) using GPT-4.1-

mini, which helped transform user queries and
corresponding comments into meaningful exam-

like MCQs. To establish the ground truth for each
MCQ, we leveraged Reddit’s engagement metrics,

calculating the score as follows:

U-D

where S is the score, U is the number of upvotes,

Annotation Preference Samples
Human preference 549
Language-model preference 258

Table 2: Distribution of WildScore questions by annota-
tion preference.

3.3 Dataset Categorization

To support structured analysis and evaluation, we
categorized our dataset into five categories as
shown in Figure 3 to represent core aspects of mu-
sic theory. These categories are further divided into
twelve detailed subcategories as shown in Figure

and D is the number of downvotes a comment has.
The comment with the highest score was consid-
ered the ground truth answer. In the event of a tie,
we used a language-model judge (Appendix A) to
select the response best grounded in the question
context. This is referred to as language-model pref-
erence, whereas the option selected according to
the score S is denoted as human preference. The
corresponding distributions of these preferences
are presented as Annotation Preference in Table 2.

After establishing the ground truth answers, we
created additional nuanced distractor options, care-
fully crafted with subtle distinctions from the cor-
rect responses using language model as specified in
Prompt A. These options were then combined with
the ground truth answers to finalize the multiple-
choice benchmark dataset as shown in Figure 2.

4.

16851

* Harmony & Tonality: Harmony concerns
the progression of chords and their simulta-
neous combination and Tonality is the hierar-
chical organization of pitches around a tonal
center that imparts direction and resolution
(Kaliakatsos-Papakostas et al., 2025).

Rhythm & Meter: The temporal aspect of
music, created by the timing of musical notes
and silences, establishes patterns known as
rhythm. The arrangement of rhythms into
regular beat patterns, frequently divided into
measures, is referred to as meter (de Haas and
Volk, 2016).

Texture: Texture refers to the combination of
melodic, harmonic, and rhythmic elements in



a composition, which might be monophonic
(having only one melody) or polyphonic (hav-
ing several separate lines) (Couturier et al.,
2022).

» Expression & Performance: Expression con-
veys musical meaning through dynamics, ar-
ticulation, phrasing, and tempo; performance
is the realization of the score in sound, in-
tegrating technique and expressivity (Xia,
2016).

* Form: Form refers to the structure of a piece,
describing the introduction, repetition, varia-
tion, and development of musical ideas (von
Riitte et al., 2022).

40

Proportion (%)

332

186

149

73

HT

RM

EP

Tx

HT
s RM
mam EP
. Tx
. FM

67

FM

Figure 3: Distribution of symbolic music questions
by high-level category. Category abbreviations: FM:
Form, HT: Harmony & Tonality, RM: Rhythm & Meter,
Tx: Texture, EP: Expression & Performance.

30

Proportion (%)
— N N}
7 o o

—
o

80
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MM
mP
- MS
RP
- T
DA
— HTX
PT
or
- S
m— CF
56

&
w
3

15 11

0

cp MM MP MS RP m DA HTx PT oT PS CF

Figure 4: Distribution of symbolic music questions by
subcategory. Subcategory abbreviations: PS: Phrase
Structure, CF: Contrapuntal Forms, CP: Chord Progres-
sions, MP: Modulation Patterns, MM: Modal Mixture,
MS: Metric Structure, RP: Rhythmic Patterns, HTx:
Homophonic Texture, PT: Polyphonic Texture, OT: Or-
chestral Texture, DA: Dynamics & Articulation, TI:
Technique & Interpretation.

3.4 Dataset Overview & Statistics

The final benchmark comprises 807 items, each
pairing a musical-score image with a question

sourced from a Reddit submission and grounded
in at least three distinct top-level comments. After
manual review by three Level-3 students (Table 6),
ambiguous, musically incorrect, irrelevant, or of-
fensive items were removed. Ground-truth labels
are split between 549 human-preferred items and
258 language-model-preferred items.

Difficulty stratification: We assign each ques-
tion to Easy, Medium, or Hard using an LLM-based
rubric. Specifically, we prompt GPT-4.1 with a few-
shot template designed from examples curated by
a Level 5 expert (criteria in Table 6) to rate the
expected difficulty from the prompt. The resulting
distribution is as shown in Table 7. Additional con-
struction details, annotator instructions, and prompt
templates are provided in the appendix C.

4 Experiments

We systematically evaluate several state-of-the-art
MLLMs using our newly proposed symbolic music
reasoning benchmark, WildScore. This evaluation
examines MLLM capabilities across the five major
musical categories defined by our taxonomy: Ex-
pression & Performance, Form, Harmony & Tonal-
ity, Rhythm & Meter, and Texture. We consider
two evaluation settings, (1) image+text (symbolic
score images provided) and (2) text-only, thereby
isolating the effect of visual context and permitting
direct comparison across modalities.

4.1 Evaluation Metrics

Following standard practice in multimodal reason-
ing benchmarks (Yu et al., 2023), we adopt ac-
curacy as our primary metric, calculated as the
percentage of correctly answered multiple-choice
questions. Each question includes one correct an-
swer, annotated based on human or language model
preference as detailed in Section 3.

4.2 Quantitative Results

Across categories, GPT-4.1-mini attains the best av-
erage performance on WildScore, reaching 68.31%
accuracy under the image and text setting. In the
text-only setting, its accuracy declines to 65.76%,
a decrease of 2.55% points, indicating a consistent
benefit from visual context. Per-category accura-
cies for all models are reported in Table 3, with a
summary visualization in Figure 5.

Performance varies significantly across cate-
gories. Notably, GPT-4.1-mini achieves the highest
accuracy in Expression & Performance (72.12%)
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and Harmony & Tonality (70.14%) categories,
whereas it notably struggles in Rhythm & Meter
(63.20%) and Texture (64.15%). This pattern aligns
with our hypothesis that current MLLMs are adept
at more superficial symbolic score recognition but
find difficulties in tasks requiring deep symbolic
abstraction and rhythmic interpretation.

—— GPT-4.1-mini
Phi-3-Vision
—— Qwen-VL
—— Gemma-3
—— MiniCPM
—— InternVL
LLaVA

Figure 5: Per-Subcategory QA Accuracy by Vision-
Enabled Model

A subcategory analysis (Table 4) reveals hetero-
geneous image contributions across models. For
GPT-4.1-mini, accuracies peak on Dynamics and
Articulation (87.18%) and Modal Mixture (79.25%)
and drop on Orchestral Texture (33.33%) and Con-
trapuntal Forms (40.00%). Other systems show
attenuated or even negative image gains in multi-
ple subcategories. We hypothesize that this het-
erogeneity reflects differences in multimodal pre-
training and alignment in models with stronger vi-
sion—language objectives and instruction tuning ap-
pear better grounded in symbolic notation, whereas
those trained primarily on natural-image corpora or
with weaker visual adapters show limited benefit
from images. A Level-5 human expert was evalu-
ated on 100 proportionally sampled questions span-
ning easy, medium, and hard categories, achieving
an overall average accuracy of 72%. Additionally,
besides Contrapuntal Forms most model perfor-
mance without the image is better than random
guessing, highlighting that the naturalized data
used to create WildScore may not fully require
perception of the scores. This makes an interest-
ing contrast to recent synthetically difficult bench-
marks that force multimodal perception to succeed
(Zang et al., 2025), as such difficult benchmarks

may not reflect the real distribution of questions,
where perception may not always be necessary.

4.3 Limitations of Smaller Models

Among smaller MLLMs - Phi-3-Vision, Qwen-2.5-
VL, Gemma-3, MiniCPM, InternVL, and LLaVA,
absolute accuracies remain below GPT-4.1-mini.
Within this group, Phi-3-Vision shows a small im-
provement with images (48.82% with image and
text vs. 47.72% only with text), and Qwen-2.5-
VL likewise benefits from images; Gemma-3 also
shows a modest gain (46.34% vs. 44.36%). By con-
trast, InternVL (39.34% vs. 45.54%), MiniCPM
(45.90% vs. 52.09%), and LLaVA (32.97% vs.
37.16%) are lower with images than without.

These patterns indicate that the ability to exploit
symbolic score images is model-dependent. In
three models: InternVL, MiniCPM, and LLaVA,
the image with text setting reduces accuracy rela-
tive to only-text setting, suggesting difficulties with
notation-heavy visuals and symbol prompt align-
ment. By contrast, Qwen-2.5-VL, Phi-3-Vision,
and Gemma-3 show only modest gains from adding
images. We will discuss likely failure modes: per-
ception of basic symbols, grounding between re-
gions of the score and the question, and higher-
level reasoning over image and question under-
standing and potential causes in our Error Anal-
ysis (Section 4.4). We also outline directions for
improvement there, including greater exposure to
schematic notation during pretraining, stronger vi-
sion—language alignment for symbolic artifacts,
and structure-aware encoders tailored to musical
scores.

4.4 Error Analysis

We categorized failures along two axes:
perception-based errors (reading notational
symbols from the image) and reasoning-based
errors (applying music-theory rules once symbols
are correctly read). Failures that persist after
successful perception are interpreted as reasoning-
related failures. To evaluate perception-specific
failures, we designed two diagnostic tasks: (i) a
perception-only probe, and (ii) a score reconstruc-
tion on image inputs. We subsequently evaluated
our best-performing model (GPT-4.1-mini) against
our weakest-performing models (InternVL and
LLaVA) on these tasks.

Diagnostic 1: Perception-only probe: To iso-
late low-level visual perception from downstream
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Model Modality Expr. & Form Harmo. & Rhythm &  Texture Average
Perf. Ton. Meter
GPT-4.1-mini (OpenAl, 2023)  w/ Image 72.12 69.57 70.14 63.20 64.15 68.31
Params: undisclosed w/o Image  67.31 71.74 64.25 67.20 60.38 65.76
Qwen-2.5-VL (Bai et al., 2023) w/ Image 52.88 52.17 47.06 47.20 58.49 49.73
Params: 8.29B w/o Image 51.92 52.17 46.15 46.40 60.38 49.18
Phi-3-Vision (Abdin et al., 2024) w/ Image 45.19 52.17 48.42 48.00 56.60 48.82
Params: 4.15B w/o Image  46.15 45.65 47.51 47.20 54.72 47.72
Gemma-3 (Team et al., 2025)  w/ Image 40.27 52.24 47.89 43.55 53.42 46.34
Params: 4.3B w/o Image  46.31 49.25 42.47 42.47 49.32 44.36
MiniCPM (Hu et al., 2024) w/ Image 50.00 45.65 44.34 44.80 47.17 45.90
Params: 3.43B w/o Image  57.69 54.35 49.32 48.80 58.49 52.09
InternVL (Chen et al., 2023) w/ Image 46.15 36.96 36.65 37.60 43.40 39.34
Params: 9.14B w/o Image  52.88 45.65 40.27 44.00 56.60 45.54
LLaVA (Liu et al., 2023b) w/ Image 37.50 41.30 28.96 32.00 35.85 32.97
Params: 7.06B w/o Image  40.38 50.00 33.03 35.20 41.51 37.16

Table 3: Per-category accuracy (%) by model and input modality. Model sizes (Params) are shown under model

names.
Model Modality Harmony & Tonality Rhythm & Meter Texture Express. & Perfor. Form Average
CP MP MM MS RP HTx PT oT DA TI PS CF

GPT-A.1-mini w/Image  70.07  47.62  79.25 57.63 68.18 69.23 80.00  33.33 87.18 63.08 73.17  40.00  68.31

e w/o Image  63.95 52.38 69.81 61.02 7273 57.69 80.00  41.67 84.62  56.92 73.17 60.00  65.76

Qwen-VL w/Image  47.62 4286  47.17 4237 5152  53.85 80.00  41.67 53.85 5231 51.22  60.00  49.73

w/o Image 4626  42.86  47.17  40.68 5152 57.69 80.00  41.67 4872 5385 5122 60.00  49.18

Phi-3-Vision w/Image  50.34  42.86 4528 4746 4848  53.85 80.00  33.33 51.28  41.54 53.66  40.00  48.82

w/oImage 50.34  57.14  35.85 49.15 4545 50.00 80.00 3333 4872  44.62 48.78 20.00 47.72

Gemma-3 w/Image  48.61 36.11 51.25 3895 4886 4722  66.67 5333  44.68 38.24 53.57 4545 46.34

w/o Image  43.52 3056  45.00 37.89  47.73 4444  57.14 5333 57.45 41.18 5179 3636 44.36

MiniCPM w/Image 4626  47.62 3774 3898 50.00  30.77 73.33 50.00  64.10  41.54 48.78 20.00  45.90

w/oImage 52.38  42.86 4340  44.07 53.03 53.85 60.00  66.67 64.10  53.85 53.66  60.00  52.09

InternVL w/Image  38.10 3810  32.08  40.68 34.85 3462 5333 50.00  46.15  46.15 39.02  20.00 39.34

w/o Image 42.18  23.81 41.51 54.24  34.85 46.15 80.00  50.00  46.15 56.92 48.78 20.00  45.54

LL w/Image ~ 29.25 28.57 2830  23.73 39.39 3462  40.00 3333  41.03 35.38 4390  20.00 3297

ava w/o Image  30.61 33.33 39.62 2542 4394 3846  46.67  41.67 3590  43.08 51.22  40.00 37.16

Table 4: Per-subcategory accuracy (%) by model and input modality, with subcategories grouped by category.

reasoning, we posed straightforward factual queries
(e.g., clef identification, symbol counts) on 50
symbolic-score images from our benchmark. The
items were handcrafted by two Level 3 (Table 6)
human experts to avoid higher-level inference. Ac-
curacy on this probe is shown in Table 5. GPT-4.1-
mini correctly perceived relevant symbols in 52%
of cases, whereas InternVL and LLaVA reached
38% and 26%, respectively. These results indicate
that a substantial portion of smaller-model errors
originate at the perception stage rather than from
subsequent reasoning.

Diagnostic 2: Score reconstruction from images:
We further examined end-to-end symbol extraction
by asking models to produce ABC notation directly
from score images. We evaluate outputs for syntac-

Table 5: Perception-only probe (accuracy %) on 50
symbolic-score images. Higher is better.

Model Accuracy (%)
GPT-4.1-mini 52.0
InternVL 38.0
LLaVA 26.0

tic validity and bar level faithfulness (qualitative
summaries in Table 8). InternVL and LLaVA fre-
quently generated invalid or degenerate sequences
(e.g., looping a single chord), while GPT-4.1-mini
produced valid ABC notations for simpler, single-
staff excerpts but degraded on longer or denser
passages, often with omissions or repeated bars.
These outcomes point to limits in sustained sym-
bolic tracking rather than purely textual reasoning.
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Across both diagnostics, smaller models strug-
gle to accurately read notation reliably, and failures
in perception propagate to reasoning. GPT-4.1-
mini shows stronger symbol reading and can re-
construct short excerpts, but still falters on longer
contexts, indicating residual limits in reasoning
over extended structure. These findings align with
the heterogeneous image effects observed and sug-
gest that improving pretraining on notation-heavy
corpora and strengthening vision—to—symbol ex-
traction are prerequisites for consistent gains on
symbolic music reasoning.

5 Conclusion

In this work, we have introduced WildScore, a
benchmark designed to evaluate the capabilities
of Multimodal Large Language Models (MLLMs)
in symbolic music reasoning with visual context.
WildScore captures the richness and diversity of
real-world musicological conversation by utilizing
real musical scores in conjunction with community-
sourced questions and answers from Reddit. Our
systematic taxonomy, encompassing broad musical
categories and detailed subcategories, facilitates
nuanced evaluation and identification of model
strengths and limitations.

Empirical results indicate that while cur-
rent state-of-the-art MLLMs exhibit substantial
promise, particularly in tasks involving surface-
level recognition and straightforward analysis, they
continue to struggle significantly with deep sym-
bolic abstraction, rhythmic complexity, and orches-
tration intricacies especially when presented as
an image. Significant differences in performance
demonstrated by popular multimodal large lan-
guage models between text-only and visual inputs
highlight how important visual context is for pre-
cise musicological interpretation.

Furthermore, our analysis highlights the substan-
tial limitations of smaller-scale models, suggesting
that significant advancements in symbolic music
understanding remain necessary. WildScore thus
not only fills a crucial gap in multimodal music rea-
soning benchmarks but also sets a clear trajectory
for future research efforts aimed at enhancing the
depth and nuance of symbolic musical comprehen-
sion in multimodal frameworks.

Limitations

Reddit’s ranking mechanisms often favor main-
stream topics, which may distort the visibility of

niche symbolic music practices and reinforce dom-
inant stylistic norms. Despite filtering, some com-
ments may contain informal or toxic language.
Symbolic music discussions may also be misin-
formed or lack technical rigor, which affects their
utility for modeling.

Ethical considerations

Data Collection and Anonymization This
dataset is constructed from publicly available Red-
dit posts, collected via the official Reddit API in
compliance with the platform’s Content Policy and
Terms of Use. All usernames, IDs, and personal
metadata have been removed to ensure anonymity.
Although Reddit is a public forum, we acknowl-
edge that users may not anticipate their contribu-
tions being used for research, particularly in aca-
demic or computational contexts.

Use and Licensing The dataset is released under
a Creative Commons Attribution-NonCommercial
4.0 International License (CC BY-NC 4.0). It is
intended strictly for non-commercial research. We
highly urge researchers to consider the ethical im-
plications of modelling public discourse, especially
in creative and culturally sensitive domains like
symbolic music, where interpretations may carry
stylistic or cultural assumptions.
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A Prompt Templates

Prompt 1: Multimodal Answer Selection (With Image)

System Prompt:

You are an expert in symbolic music-score question answering. You will be provided with an image
of a musical excerpt, a question about it, and several labeled options. Analyze the image and text,
then choose the correct answer. Respond with ONLY the option letter.

User Prompt:
<image>

Question: Which measure best represents the 6/8 time signature?

Options:
A. Grouped in two dotted-quarter notes
B. Grouped as three quarter notes

Prompt 2: Text-Only Answer Selection

System Prompt:

You are an expert in symbolic music-score question answering. You will be provided with a
question about a musical excerpt and several labeled options. Choose the correct answer based
solely on the text. Respond with ONLY the option letter.

User Prompt:

Question: Which measure best represents the 6/8 time signature?

Options:
A. Grouped in two dotted-quarter notes
B. Grouped as three quarter notes
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Prompt 3: Distractor Generation

System Prompt:

You are a musicology professor preparing multiple-choice questions for an upcoming exam. You
are given a music-related question and one correct option. Generate nuanced distractor options
with subtle differences from the correct answer.

Guidelines:

* Generate up to three distractors (fewer is fine).

* They must all be plausible yet incorrect.

» Keep them concise (5-10 words).

Return ONLY valid JSON in the form: {"Option A": "...", "Option B": "...", ...}

User Prompt:

"Title": <title_of_reddit_submission>
"Question”: <reformatted_question>
"Correct Option"”: <decided_ground_truth_answer>

Prompt 4: Ground-Truth Selection (Text-Only)

System Prompt:

You are an expert in symbolic music-score question answering. You will be provided with a
question about a musical excerpt and several labeled options. Choose the correct answer based on
the text. Respond with ONLY the option letter.

User Prompt:
Question: {{QUESTION_PLACEHOLDER}?}

Options:
{{OPTIONS_PLACEHOLDER}}
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B Illustrative Items

Harmony & Tonality
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QUESTION ht2: In the opening of Mozart’s 17th piano concerto, specifically at bar 3, beat 2,
there is a movement from A# to B. What is the purpose of this A# note in the context of the
melody and harmony? Consider whether it suggests a brief tonicisation, functions as a passing
tone, or serves another musical role, especially in comparison to similar harmonic devices in
Mozart’s piano concerto No. 23.

A. A quirky, light-hearted passing tone within G major chord
B. An unresolved suspension within G major
C. A leading tone preparing for modulation
D. A dominant note resolving to G major

Rhythm & Meter
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In the context of learning the piano piece Fade to Black by Metallica, specifically referring to the
treble clef in bar 64 and the bass clef in bar 65 as shown in the provided image, how should one
count the quarter-note triplets in bar 64 and the sixteenth-note triplets in bar 65, considering the

tempo and rhythmic complexity?

A. Count bar 64 as one, two, three, four
B. Count bar 64 as one-and-two-and, steady quarter
C. Count bar 64 as one, two, three-and-a, feeling triplets as half-note split
D. Count bar 64 as one-and-two, triplet feel
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Expression & Performance
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Considering the transcription of a rhythm involving 16th rests, 8th notes, and beams over rests as
shown in the linked symbolic music images, which approach is considered the clearest and most
effective way to notate these rhythms for readability and accurate performance?

A. Use quarter notes and beams over rests
B. Use 16th notes only with no rests
C. Use 16th rests with 8th notes and beam over rests
D. Use 8th rests with 16th notes and beams

S =

Texture

QUESTION: Considering the orchestration challenges presented by Bach’s Prelude in C Major

from the Well-Tempered Clavier for a woodwind quartet, including issues with instrument range,

balance, and idiomatic writing for keyboard, what is the most effective approach to orchestrate this
passage?

A. Use flute/clarinet for bass, bassoon/oboe for arpeggios
B. Use clarinet for melody, bassoon for counterpoint
C. Use bassoon/oboe for bass, clarinet/flute for arpeggios
D. Use oboe/bassoon for harmony, flute/clarinet for melody
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C Human Expertise Criteria

Table 6: Assessment levels for human expertise.

Level Description

1 Rarely listens to music.

2 No music-theory knowledge, but can
distinguish genres and has preferred
styles.

3 Basic knowledge of playing an instru-
ment or music theory.

4 No formal training; self-taught aspects
of music theory.

5 Completed academic coursework in mu-
sic theory.

Full instruction text shown to annotators. You
are asked to review candidate MCQ items derived
from Reddit submissions that include musical-
score images. For each item: (i) check that the
question is musically correct and unambiguous; (ii)
verify that the answer options are relevant to the
question; (iii) delete any options or posts you judge
irrelevant or offensive; (iv) flag any ambiguous or
musically incorrect items for exclusion. If you en-
counter potentially offensive material, do not con-
tinue with that item—remove/flag it and proceed
to the next one. Do not record or transcribe any
personal identifying information (PII) that might
appear in posts or images.

Recruitment and compensation. Annotators
were Level-3 students at a U.S. university and re-
ceived course credit. Participation was voluntary;
no monetary payments were provided.

Consent and data provenance. By opting into
the course-credit activity, annotators consented to
their contributions being used for research. Reddit
content was obtained from publicly available posts
via the official API; usernames and direct identifiers
were removed, and use followed the platform’s
terms.

Ethics determination. This project analyzes
public data and involves low-risk student annota-
tion without collection of PII; it was determined
that formal IRB review was not required.

Demographics.
were collected.

No annotator demographic data

Table 7: Distribution of datapoints by LLM-assigned
difficulty tier.

Tier Count
Easy 191
Medium 573
Hard 43
Total 807

Table 8: ABC reconstruction from images: qualitative
outcomes.

Model

GPT-4.1-mini Often produces valid, faithful
ABG; reliability drops in extended
sequences, with omissions or
repeated bars.

Observed outcome

InternVL Frequently yields invalid or
incorrect ABC; many degenerate
sequences.

LLaVA Predominantly generates

degenerate loops and invalid ABC.

D Bias Check for Judge/Formatting

To assess whether using GPT-4.1-mini in the
pipeline could bias evaluation, we compared
GPT-4.1 and GPT-4.1-mini on a random 50-item
subset drawn from WildScore under the same
protocol.GPT-4.1 secured 58 % accuracy while
GPT-4.1-mini only secured 50 % accuracy as seen
in Table 9.

Table 9: Subset comparison (50 items) probing potential
bias from using GPT-4.1-mini in data construction.

Model Accuracy (%) n
GPT-4.1 58 50
GPT-4.1-mini 50 50
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