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Abstract

During conversation, speakers collaborate on
spontaneous referring expressions, which they
can then re-use in subsequent conversation with
the same partner. Understanding such referring
expressions is an important ability for an em-
bodied agent so that it can carry out tasks in the
real world. This requires integrating and under-
standing language, vision, and conversational
interaction. We study the capabilities of seven
state-of-the-art Large Vision Language Models
(LVLMs) as overhearers to a corpus of spon-
taneous conversations between pairs of human
discourse participants engaged in a collabora-
tive object-matching task. We find that such a
task remains challenging for current LVLMs,
which fail to show a consistent performance im-
provement as they overhear more conversations
from the same discourse participants repeating
the same task for multiple rounds. We release
our corpus and code1 for reproducibility and to
facilitate future research.

1 Introduction

A crucial skill for embodied AI agents working
with humans is grounding in referential communi-
cation: the ability to resolve which object in the
visual environment a speaker is referring to. This is
a non-trivial problem for several reasons: there may
be no lexicalized label associated with the referent;
there may be many ways to refer to it; or there may
be multiple objects of the same type in the environ-
ment. Moreover, referential communication occurs
in different interactive contexts: the referring ex-
pression can be part of a single, one-off instruction
given to an AI agent; it can unfold over several
conversational turns as a human interacts with the
AI agent to clarify meaning; or the AI agent may
overhear a conversation between two or more hu-
mans. The past few years have witnessed rapid

1https://github.com/jaaack-wang/
lvlms-overhearing

Figure 1: Our overhearer matching task (after Schober
and Clark, 1989): the AI agent (LVLM) reads a tran-
script from a human referential communication corpus
and tries to match the same cards as the matcher to the
director’s target sequence.

advances in large vision language models (LVLMs)
(Alayrac et al., 2022; Liu et al., 2023; Dai et al.,
2023; OpenAI et al., 2024b; Team et al., 2024, in-
ter alia). However, LVLMs still lag behind human
capabilities in both comprehending and generating
referring expressions (Tang et al., 2024), even in a
single-instruction setting.

In this paper, we address the problem of an AI
agent overhearing two people engaged in sponta-
neous referential communication. This scenario
is important because the AI agent may be a side
participant who stands by to assist when called
on; it will need to understand the referential con-
ventions that discourse participants develop over
time. For example, assistive robots in the home
may need to monitor conversations between resi-
dents (with prior consent) and perform tasks (such
as manipulating objects) that require integrating
and understanding language, vision, and conversa-
tional interaction.

To address this issue, we use a previously un-
published corpus of spontaneous conversations be-
tween pairs of humans engaged in a collaborative
object-matching task over repeated rounds of the
same task. As illustrated in Figure 1, we prompt
an LVLM, acting as an overhearer, to perform the

https://github.com/jaaack-wang/lvlms-overhearing
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same task as the human matcher—that is, matching
objects to the director’s target sequence.

We ask two research questions: (1) How well
can LVLMs perform as overhearers in a referen-
tial communication task? and (2) Can LVLMs im-
prove on their ability to resolve human-generated
referring expressions, after witnessing repeated ref-
erences to the same objects by the same human
discourse participants? The second question is par-
ticularly important because even though psycholin-
guistics studies have shown that interacting in a
conversation differs from overhearing it (Schober
and Clark, 1989; Fox Tree, 1999; Fox Tree and
Mayer, 2008; Castano et al., 2023), these two roles
have not been defined or distinguished for LLMs.
A useful AI agent in the overhearer role should
adapt to and learn from the dynamics of language
use, much like a human overhearer can. A failure
to do so would suggest that the agent cannot effec-
tively accumulate personalized knowledge across
interactive contexts, thereby limiting its practical
utility. To our knowledge, this study is the first to
test LVLMs on a referent-matching task using a
corpus of human referential communication.

Our primary contributions are as follows:

1. We release a corpus of spontaneous referen-
tial communication dialogues, collected under
controlled conditions but previously unpub-
lished, to facilitate future studies.

2. We demonstrate empirically that resolving ref-
erences to common real-world objects (i.e.,
baskets and dogs) produced during sponta-
neous conversation remains challenging for
LVLMs, with high unexplained variability.

3. We show that all tested LVLMs, including
proprietary LVLMs like GPT-4o, fail to show
a consistent performance improvement as they
read more conversations from the same human
pair matching the same objects over time.

2 Theoretical Background

Conversation, by its very nature, is collaborative.
Speakers and addressees tailor their utterances
and their interpretations to each other’s knowl-
edge, needs, and perspectives, as well as to the
common ground they share (Clark and Wilkes-
Gibbs, 1986). Sources of common ground can
include co-membership in a community, as well

as perceptual co-presence, which derives from in-
terlocutors’ mutual awareness of the shared en-
vironment. Most important for our purposes is
linguistically-established common ground, or the
prior co-presence of interlocutors to what they’ve
said previously and can presume is part of their
mutual knowledge (Clark and Marshall, 1981).
The process of establishing and updating common
ground is an essential engine for collaboration.

Grounding The term grounding has been used
extensively in cognitive science, psycholinguistics,
and AI. Grounding can be described as the “ac-
cess to or awareness of the physical, perceptual,
goal-oriented or social contexts in which language
occurs” (Pavlick, 2023), and in human communi-
cation more specifically, the interactive process by
which interlocutors seek and provide evidence that
they understand one another, as they accrue com-
mon ground (Clark and Brennan, 1991; Metzing
and Brennan, 2003; Brennan, 2005).

This paper focuses on the grounding of linguistic
expressions by pairs of people, mapped onto visual
representations during a collaborative referential
communication task. Although word meanings are
informed by linguistic conventions, meanings are
not “contained” within words (Reddy, 1993), but
can be collaboratively constructed by speakers and
addresses, often in service of a shared task or goal
(for discussion, see Brennan and Clark, 1996).

Addressees vs Overhearers Conversation is of-
ten studied in the lab using variants of a matching
task, in which addressees interact with speakers
to match a set of picture cards, build something
together, or trace a route on a map. The natural be-
havior of speakers and addressees in such tasks is
to collaborate until they have evidence that they’ve
reached a “grounding criterion” sufficient for their
current purposes (Clark and Brennan, 1991; Clark
and Wilkes-Gibbs, 1986); when the shared goal is
to match a set of cards accurately, they continue
seeking and providing evidence until they believe
they’ve reached that criterion. The first round of a
matching task always takes the longest (more time,
words, and turns), becoming more efficient in sub-
sequent rounds with the same objects and partners
as they accrue common ground.

The role of an overhearer is very different from
that of an addressee. A now-classic psycholinguis-
tics study by Schober and Clark (1989) demon-
strated that addressees in a matching task perform
more accurately than overhearers in the same task,



because they are able to ground meaning with
speakers, whereas the overhearers cannot. An over-
hearer sometimes understands the referent early
(but must wait for the task to move on), sometimes
late (and falls behind in the task) and sometimes
not at all (and selects the wrong picture card). In
Schober and Clark (1989), addressees (who could
contribute to the conversation) matched the cards
nearly perfectly, whereas overhearers (who heard
every word but did not interact) reached only about
80% accuracy in Round 1 and about 90% by Round
4. Strikingly, “late overhearers” who listened in to
the recorded conversations starting in Round 3 did
worst of all, achieving only 68-73% accuracy, even
when they could stop and start the recordings to try
to keep up (See Figure 3 in their paper).

Variation in Human Language Use There is
considerable variation in human language use, in-
cluding in choices of wording, syntax, prosody,
and coordination strategies. This variation is not
random, but emerges strategically, such that lex-
ical variability is much greater across conversa-
tions than within a conversation. For instance,
two partners in dialogue tend to entrain on words,
consistently using the same referring expression
(albeit in shortened form) over the course of re-
peated referring to the same object, as if to confirm
a “conceptual pact” that they’re referring to the
same thing they discussed previously (Brennan and
Clark, 1996; Krauss and Weinheimer, 1964; Metz-
ing and Brennan, 2003).

Challenges for an AI Agent Ultimately, a use-
ful embodied AI agent should be able to maintain,
adapt, and build on the common ground accrued
in conversation. The agent should (1) be robust
enough to understand and track the expressions
that different pairs of speakers use to describe the
same objects (Brennan and Clark, 1996), and (2)
be able to cope with the dynamic variations in hu-
man language use, including the choice of wording,
syntax, prosody, and coordination strategies (es-
pecially those due to the use of common ground).
This requires evaluating how well a foundation
model (whether LLM or LVLM) performs with
spontaneous dialog during repeated discussions of
the same objects with the same speakers.

3 Related Work

Machine Comprehension of Referring Expres-
sions Evaluating the visual grounding abilities

of language models often involves tasks that re-
quire identifying a particular object in an image
using a natural language referring expression (Qiao
et al., 2021). Conventional methods typically fol-
low a two-stage approach: first generating open-
vocabulary object proposals, then selecting the
one that best matches the language description.
More recent efforts have built upon the emerg-
ing capabilities of vision transformers (Dosovit-
skiy et al., 2020), leading to improved models (Su
et al., 2024a). Moreover, LVLMs have demon-
strated strong performance on visual grounding
tasks even in zero-shot settings (Sui et al., 2023;
Subramanian et al., 2022), while specialized ap-
proaches have been developed to further improve
their zero-shot grounding abilities without task-
specific supervision (Han et al., 2024).

Visual Grounding Capabilities of LVLMs
LVLMs exhibit strong visual grounding capabil-
ities thanks to their large-scale multi-modal pre-
training (Lu et al., 2023). On top of the core vision-
language alignment principles established by foun-
dational models, such as CLIP (Radford et al.,
2021), LVLMs show remarkable performance on
a wide range of tasks, including referring expres-
sion comprehension (Su et al., 2024b), visual ques-
tion answering (Sinha et al., 2025), and instruction
following (Bitton et al., 2023). However, spatial
and compositional reasoning remains a challenging
task for current LVLMs, as, for example, they often
struggle with relational cues (Chen et al., 2024) or
multiple visual concepts (Zeng et al., 2024).

Another line of research explores the interactive
visual grounding capabilities of LVLMs engaged
in multi-turn dialogues to resolve ambiguous refer-
ences and refine their understanding through con-
versational context (Feng et al., 2023; Tian et al.,
2025). Recently, Tang et al. (2024) showed that
humans consistently outperform LVLMs in com-
prehending referring expressions generated to tar-
get a dot placed in a shared 3-D environment. Our
study extends this work to focus on the capabilities
of LVLMs as overhearers, to examine the mapping
of referring expressions onto referents discussed
repeatedly in spontaneous human conversations,
rather than as one-off descriptions.

Finally, although LVLMs may be able to process
language produced by humans, they do not exhibit
a human-like tendency to spontaneously make the
language they generate more efficient over multiple
turns (Hua and Artzi, 2024).



Figure 2: The left panel shows one target basket; the middle panel shows one pair’s corresponding dialogue from
Round 1 to Round 4, demonstrating entrainment on more concise language (for the perspective "rectangular-shaped").
Here, entrainment occurs after they consider multiple proposals in Round 1. The right panel depicts the mean word
count (a measure of efficiency) for baskets and dogs across rounds. Error bars indicate ±1 standard error of the
mean across pairs.

Studies of Machines as Overhearers Numer-
ous studies have evaluated LLM/LVLM foundation
models in the overhearer/observer role (Castano
et al., 2023; Kim et al., 2023; Kosinski, 2024; Jin
et al., 2024; Soubki et al., 2024; Street et al., 2024).
Most pertain to Theory of Mind (ToM) (Premack
and Woodruff, 1978) and examine a model’s ToM
ability to attribute false beliefs to characters due
to their absence at a critical point in the story, fol-
lowing the classic Sally-Anne test (Wimmer, 1983;
Baron-Cohen et al., 1985). Our study differs from
ToM studies in that we analyze the grounding ca-
pabilities of LVLMs without assuming informa-
tion asymmetry between the overhearer and the
discourse participants: all have access to the same
words, as in Schober and Clark (1989).

4 Corpus

Overview Our corpus comprises 80 human-to-
human dialogues totalling 27,902 words, collected
by Calion B. Lockridge and Susan E. Brennan at
Stony Brook University in 2001 and not previously
published. Ten pairs of native-English-speaking
undergraduates (20 speakers in total) did repeated
rounds of a referential communication task (Krauss
and Glucksberg, 1969; Clark and Wilkes-Gibbs,
1986). During each round, the pairs spoke freely
while they matched duplicate sets of picture cards.
The dialogues were recorded and manually tran-
scribed. Figure 2 shows a representative example
excerpted from the transcripts of two people de-
scribing the same target basket in Round 1 and
again in Round 4.

Task and Materials Following Clark and
Wilkes-Gibbs (1986), speakers were recruited in
pairs, with one partner randomly assigned to the
role of director (D) and the other to the role of
matcher (M); they remained in their assigned role
throughout the experiment. Partners sat in separate
rooms and communicated via an audio channel.

Each pair completed a total of eight rounds of
the referential communication task in a one-hour
session—four rounds with the same set of pictures
of dogs, and four rounds with the same set of pic-
tures of baskets (counterbalanced for order). These
basic-level categories were chosen to vary the diffi-
culty of expressing and identifying referents : dogs
are associated with commonly-known subordinate
category labels such as breeds, whereas baskets are
not (see Figures 5 and 6 in Appendix A for details).
D’s and M’s sets contained duplicates of the same
10 dogs (or baskets), with 3 additional cards only
in M’s set, to require them to discuss all 10 targets.

Performance and Linguistic Patterns All pairs
successfully completed the matching task in all
rounds, achieving 100% accuracy. This corpus
showed consistent linguistic patterns that align with
the findings of Clark and Wilkes-Gibbs (1986) and
Schober and Clark (1989), with partners becoming
more efficient in their expressions across rounds.
That is, objects were described in greatest detail in
Round 1, often with multiple proposals for expres-
sions until M acknowledged understanding. By as
early as Round 2, word counts dropped sharply, by
about 50%. By Rounds 3 and 4, partners typically
had entrained on shared conceptualizations, with



concise labels for the objects This reflects the accu-
mulation of common ground over repeated interac-
tions. The summary plot in Figure 2 illustrates this
in the form of reduced word counts across rounds
(see also Figure 7 in Appendix A).

Manual Extraction of Object Descriptions Our
experiments use the transcripts from these spon-
taneous conversations; however, we extended the
corpus for a follow-up experiment (see the Object
Descriptions test reported in Section 7) by man-
ually extracting 10 complete object descriptions
from each transcript, yielding a 800 object descrip-
tions. Each description starts with D describing a
target object and ends when M recognizes it. This
allows for a finer examination of a system’s visual
grounding capability on an object level.

Corpus Value and Lack of Data Contamination
As this corpus has not been published and is not
included in any LVLM training data, it is free from
the risk of data contamination (Jacovi et al., 2023;
Sainz et al., 2023). It provides an ideal testbed
for evaluating LVLMs’ ability to adapt to sponta-
neously produced referring expressions from mul-
tiple speakers, grounded in visual images, without
the influence of prior exposure or memorization.

5 Methodology

Task Description To prompt an LVLM to per-
form the overhearer matching task, we provide it
with a transcript and an image as inputs. The tran-
script is a conversation between a director and a
matcher at a specific round from our corpus. The
input image contains the corresponding 13 objects
(baskets or dogs) used during the conversation, ran-
domly arranged in a 3x5 grid, and numbered from
1 to 13 (see Figures 5 and 6 in Appendix A for two
examples). The LVLM is instructed to produce the
correct sequence of 10 target object indices for the
objects as described by the director.

Experimental Procedure Our corpus contains
four rounds of conversations between each hu-
man director-matcher pair for each object type.
To address the two research questions listed in
Section 1, we evaluate (1) the performance of an
LVLM as overhearer at single rounds and (2) how
this performance evolves over multiple rounds of
conversation between each director-matcher pair,
with the methods and performance of Schober and
Clark (1989)’s overhearers in mind. More con-
cretely, we measure LVLM task performance in

each round from a starting round to the end round.
We tested four starting rounds for each object type,
i.e., Round 1 (R1), Round 2 (R2), Round 3 (R3),
and Round 4 (R4), and one end round, R4. We
prompt the LVLM to perform the matching task
for each starting round separately in a multi-turn
conversation setting.

The input objects are shuffled for each round,
since the human overhearer’s display showed the
objects in arbitrary order. Our early experiments
showed that LVLMs appear to be sensitive to object
orderings in their visual input, which we further
evaluate in Section 6.3. While this sensitivity to
ordering reflects a challenging aspect of our corpus,
offering an ideal testbed for robustness testing, it
poses an evaluation challenge. To minimize effects
of order and obtain more reliable results, we run
each LVLM five times with different object order-
ings via greedy decoding for each experimental
configuration throughout the study.

LVLMs We evaluate (1) four proprietary LVLMs,
namely Claude-3.7-Sonnet (Anthropic, 2025),
Gemini-2.0-Flash (Google DeepMind, 2024), and
GPT-4o and GPT-4o-mini (OpenAI et al., 2024a),
as well as (2) three open-weight LVLMs, namely
Qwen2.5-VL-32B and Qwen2.5-VL-7B (Bai et al.,
2025), and Pixtral-12B (Agrawal et al., 2024). We
choose only models that support multiple input im-
ages, since our task involves multiple input images
from different rounds. See Appendix B.1 for more
details about these models.

Prompting In the prompt, we provide all the nec-
essary background information regarding the hu-
man director-matcher matching task, as described
in Section 4. We explain the overhearer matching
task and the task procedure, as illustrated earlier.
We prompt all LVLMs with zero-shot chain-of-
thought (Kojima et al., 2024), with temperature set
to 0 to maximize reproducibility. All the prompt
templates can be found in Appendix D.

Evaluation Metric We compute accuracy, i.e.,
percentage of correctly matched objects, to mea-
sure LVLM task performance on the overhearer
matching task. In other words, a model getting
9/10 or 0/10 objects correct would score 90% and
0%, respectively.

6 Results

Figure 3 shows the average accuracy (with 95%
confidence intervals) of various LVLMs on the



Figure 3: Average accuracy of various LVLMs in the overhearer task over rounds. There are 4 overhearing starting
points from Round 1 to Round 4, yielding three lines and one single point. The shaded areas and error bars denote
95% confidence intervals. In this corpus, all human matchers’ performance is 100% at every round.

overhearer matching task across multiple rounds.
We compare performance among the models for
a single round and for sequences of rounds with
different starting points (capturing the experience
of Schober and Clark (1989)’s “late overhearers”).

To interpret these results, we first examine the
performance of the LVLMs at single rounds to eval-
uate how well they resolve real-world object ref-
erences in spontaneous, interactive conversations.
We then analyze how their performance evolves
when initialized from different starting rounds, pro-
viding insights into their potential as embodied
agents. Lastly, we conduct a robustness analysis.

6.1 Performance at Single Rounds

Proprietary LVLMs substantially outperform
open-weight models. As Figure 3 shows, the
large proprietary LVLMs (i.e. GPT-4o, Gemini-2.0-
Flash, and Claude-3.7-Sonnet) achieve an average
accuracy ranging from 45.8% (Claude-3.7-Sonnet
at R4 with a R4 start for dogs) to 76.5% (Gemini-
2.0-Flash at R2 with a R1 start for baskets). In con-
trast, the open-weight models achieve only 42.8%
accuracy at best (Qwen-2.5-VL-32B at R3 with a
R1 start for dogs), and 4.4% at worst (Pixtral-12B
at R3 with a R3 start for baskets).

Model scaling appears beneficial for language
grounding. Model sizes of proprietary LVLMs
are not publicly disclosed. But available informa-
tion suggests that size and performance are cor-
related. Specifically, GPT-4o consistently outper-
forms GPT-4o-mini, and Qwen-2.5-VL-32B out-

performs Qwen-2.5-VL-7B. Furthermore, propri-
etary LVLMs are likely larger than other models,
suggesting that larger models perform better.

LVLMs underperform human matchers. Re-
call that in our corpus, all human director-matcher
pairs completed the matching task with 100% ac-
curacy in every round, substantially outperforming
all tested LVLMs, regardless of LVLM starting
round. Prior research has shown that human over-
hearers also perform worse than interacting part-
ners in matching tasks (Schober and Clark, 1989;
Fox Tree, 1999; Fox Tree and Mayer, 2008; Wilkes-
Gibbs and Clark, 1992). But unlike human over-
hearers, LVLM overhearers in our experiments can
access the entire conversation for every matching
decision, thanks to their built-in attention mecha-
nisms. Despite this advantage, even state-of-the-art
LVLMs fail to reliably exploit this additional con-
versational context to match human-level perfor-
mance. This suggests that grounding spontaneous,
naturalistic descriptions to visual referents remains
a substantial challenge for LVLMs.

6.2 Performance Dynamics Across Rounds

LVLMs fail to show consistent improvement on
the same matching task over time. To measure
how each model’s performance evolves over time,
we use ordinary least squares (OLS) regression
to model the overall performance trend shown in
Figure 3. A run shows improvement only if the
regression line has a positive coefficient with a p-
value less than 0.05. The results in Table 1 confirm



Starting Round R1 R2 R3
Source Model

Baskets Claude-3.7-Sonnet 1.6 5.2*** 9.4**
Gemini-2.0-Flash 2.6* 2.8 4.6
GPT-4o 1.9* 1.8 3.6
GPT-4o-mini 2.7** 3.1* 13.2***
Qwen-2.5-VL-32B 1.2 -2.3 2.0
Qwen-2.5-VL-7B -2.3*** -7.3*** -3.0
Pixtral-12B 0.6 -2.7** 4.2**

Dogs Claude-3.7-Sonnet 2.4* 1.4 5.0
Gemini-2.0-Flash 3.5*** 2.6 10.0**
GPT-4o 3.4** 2.0 7.1
GPT-4o-mini 0.3 -3.1 -0.8
Qwen-2.5-VL-32B 2.1 -1.1 1.2
Qwen-2.5-VL-7B -0.1 2.6 -5.0
Pixtral-12B -1.2 -7.2** -0.2

Table 1: Overall performance trend (slope) over rounds
for each LVLM starting at Ri, using ordinary least
squares (OLS) regression. Significant positive and neg-
ative trends are highlighted, along with significance (“*”
is p < 0.05, “**” is p < 0.01, and “***” is p < 0.001.) See
Figure 3 for a visualization of the performance trend.

the performance gap between proprietary LVLMs
and open-weight LVLMs, with the former showing
more desirable performance trends. However, even
for the proprietary LVLMs, overall performance
does not consistently improve for every starting
round (the only exception is, surprisingly, the small-
est proprietary model, GPT-4o-mini, for baskets).
Often, the open-weight models even decrease. We
also analyze the overall performance trend using
Spearman and Kendall rank correlations, which fur-
ther validate these findings and show that even for a
positive performance trend, the overall correlations
remain small (see Appendix C.1).

We further measure the performance trend for
the dialogues of each human pair, using the same
method. We then compute the percentage of hu-
man pairs for whom the LVLMs show consistent
improvement over the starting rounds. The results
show that the models tested fail to show an overall
improvement on at least 70% of the human pairs
(see also Table 7 in Appendix C.1).

Lastly, as a sanity check, we simply compute
the percentage of times an LVLM shows mono-
tonically increasing performance for each starting
round across the two datasets. The results show
that all LVLMs struggle to achieve a smooth, incre-
mental performance improvement over time, since,
for example, when starting from R1, the best model
exhibits a monotonically increasing performance
curve only 46% of the time. See Table 6 in Ap-
pendix C.1 for details.

LVLMs do not consistently benefit from an early
start, unlike humans. Given the characteristics

Source Baskets Dogs
Model

Claude-3.7-Sonnet -3.9*** -3.3**
Gemini-2.0-Flash -0.8 -0.8
GPT-4o -4.0*** -1.3
GPT-4o-mini 1.9* 0.6
Qwen-2.5-VL-32B 1.5 -1.9
Qwen-2.5-VL-7B 0.4 0.6
Pixtral-12B 0.4 -1.2

Table 2: Overall performance trend (slope) across the
four starting points (R1, R2, R3, and R4) for each
LVLM, using ordinary least squares (OLS) regression.
A significant negative slope is more desired here as that
indicates that an model benefits from an earlier start.

of our corpus where object descriptions used in
R1 tend to be much more elaborate than the subse-
quent rounds (see Figure 2), we expected LVLMs
to perform better in their starting round if they be-
gin with R1 than with R2 (or other later rounds).
However, no models show a significantly better
performance in R1 than R2 as their starting rounds
in paired t-tests (see Table 9 in Appendix C). In
fact, several LVLMs perform significantly better in
their starting round when beginning with R2 rather
than R1, including Gemini-2.0-Flash for baskets
(7% mean accuracy gain for R2, p < 0.05.)

To study the overall performance differences be-
tween starting at an earlier round versus a later
round, we use OLS regression to analyze the over-
all performance trend across the four starting points
(i.e., R1, R2, R3, and R4). Table 2 shows that
two proprietary LVLMs (GPT-4o and Claude-3.7-
Sonnet) generally perform better the earlier over-
hearing starts, but none of the other LVLMs show
such a performance pattern.

In principle, with an earlier start, an LVLM reads
in more conversation between the human director
and matcher, so it should better understand the
subsequent rounds of conversations, compared to
when it begins at a later round. We compare the
mean accuracy differences of overlapping rounds
between an early start and a late start using paired
t-tests (see Table 8 in Appendix C). Proprietary
LVLMs tend to benefit more from an early start, in
terms of performance gain over subsequent rounds,
than open-weight models. This suggests that these
open-weight models are less able to use previous
discourse effectively to capture the dynamics of
language use over time.



Figure 4: Accuracy boxplots of two best-performing
LVLMs in the overhearer task for Round 1 conversations
across 10 human pairs (whiskers denote 25th and 75th
percentiles). Each boxplot represents 30 runs of a model,
each with a different object ordering.

6.3 Robustness Analysis

An AI agent should understand not only the
dynamically-evolving entrained-upon expression
used by a human pair for a referent, but also that dif-
ferent pairs of human discourse participants entrain
upon different expressions for the same referent.
The agent should also be robust to object ordering
in the input image. We tested matching perfor-
mance on R1 for the two best-performing LVLMs,
GPT-4o and Gemini-2.0-Flash, across human pairs,
using different object orderings in each of 30 runs
for each pair.

Figure 4 shows substantial performance varia-
tion of model performance with dialogue from dif-
ferent pairs of people and different object orderings.
We use the difference between the 25th and 75th
percentile of each boxplot as a proxy to measure
performance variations and find that for the baskets
(dogs) datasets, there is at least a 10.0% (10.0%)
difference in these percentiles, with an average dif-
ference of 21.5% (18.5%).

Furthermore, both models perform better on
some pairs’ conversations than others. For exam-
ple, GPT-4o performs better with human Pair 1
than Pair 2 for their R1 conversations about baskets,
with a significant difference between the means of
32.0% (p < 0.001). See Table 10 in Appendix C.3
for exhaustive pairwise comparison across pairs.

We hypothesize that these performance varia-
tions may be caused by different levels of infor-
mation density in transcripts of different human
pairs. However, we find no significant correlation
between the average model performance and five

proxy features we use, namely, number of words,
number of sentences, number of utterances, num-
ber of director turns, and number of matcher turns.
See Table 11 in Appendix C.3 for details. We leave
further analysis for future studies.

7 Follow-Up Experiments

We perform a series of follow-up studies to analyze
factors that may affect LVLM’s performance on
our corpus, both in terms of a single round (R1)
and over successive rounds (R1-R4). Given the
relatively small size of our corpus, we focus on
evaluating the out-of-box capabilities of current
LVLMs, instead of performing finetuning. For the
best-performing closed and open LVLMs, namely
GPT-4o and Qwen-2.5-VL-32B, we run follow-up
experiments that vary each of the factors below.
Unless otherwise stated, we run each experiment
from R1 through R4 and five times for each human
pair, aligning with Section 5.

Textual Inputs We test this factor in four exper-
iments. In the first two, we vary the text that the
LVLM sees; in the next two we vary how the tran-
script is parceled out to the LVLM.

First, we remove colloquial features to make
the transcripts read more like formal written text
(+Formal). Second, we replace the text produced
incrementally during interaction with summaries
of object descriptions, removing any interactive
features (-Interaction). We rewrite the transcripts
using GPT-4.1 (OpenAI, 2025) for the two con-
ditions and run the two LVLMs on the rewritten
transcripts from R1 to R4. We inspected the output
and found the generated quality acceptable for our
intended use. The prompt templates for +Formal
and -Interaction can be found in Appendix D.2.1
and Appendix D.2.2, respectively.

Third, instead of providing the entire transcript,
we provide each LVLM with complete object de-
scriptions one at a time, manually extracted as de-
scribed in Section 4 (ObjectDesc). In contrast with
the condition -Interaction, we maintain the inter-
active dialogue, but the LVLM only sees one object
description at a time. This provides a control exper-
iment with isolated descriptions, which helps disen-
tangle whether the model performance failures are
due to the overhearer setting or a more fundamental
weakness in the models’ basic grounding ability.
Since 10 times more API calls are needed for this
experiment, we run it only on R1.

Fourth, to test whether LVLMs can benefit from



the “foresight” of accessing all transcripts at once
(AllTranscripts), we prompt LVLMs to do the
matching task for all R1-R4 transcripts at once,
along with the corresponding 4 input images ap-
pended after each transcript.

Visual Inputs In the main experiments, LVLMs
see 13 objects each time, in shuffled orders.
In the follow-up experiments, the LVLMs see
only the 10 target objects in same shuffled order
(OnlyTargets), or the 13 objects with fixed order
(FixedOrder). This is to determine whether either
condition makes the task easier.

Feedback After an LVLM produces its answer
at the end of each matching round, we provide it
with the correct answers for all 10 objects in the set
and prompt it to self reflect if its answers are not
correct (+Feedback). This tests whether LVLMs
can learn from feedback and improve over time.

Observations & Findings Table 3 shows the
performance change under each condition rela-
tive to the baseline model performance from Sec-
tion 6. Removing informal and interactive features
of spontaneous conversations does not yield a sig-
nificant performance difference for GPT-4o and
Qwen-2.5-VL-32B, but including all rounds sig-
nificantly hurts model performance from Round
2 on. This means that these two models cannot
effectively use information from all transcripts to
resolve references across different rounds and thus
do not benefit from the “foresight” of seeing all
transcripts upfront. This is also true when feedback
is provided to help the model reflect on mistakes,
which makes no significant difference. The last two
points potentially explain the lack of a consistent
performance improvement over rounds observed
in Section 6. That is, they show that LVLMs do
not accumulate knowledge across rounds, even in
light of all information presented or feedback that
reveals true answers.

Moreover, both models tend to show a signifi-
cant and large performance gain when given object
descriptions. This shows that identifying individ-
ual objects may not be the bottleneck that causes
LVLMs to perform much worse than human match-
ers and fail to improve over rounds.

Finally, our follow-up experiments with visual
inputs demonstrate that repeating the same input
image for multiple rounds typically yields no sig-
nificant difference, but, as expected, models do
consistently benefit from doing the matching task

Model GPT-4o Qwen-2.5-VL-32B
Source Baskets Dogs Baskets Dogs

Condition Round

+Formal 1 -4.0 +3.6 -0.2 -2.8
2 +0.8 -2.4 -3.2 +1.4
3 -3.0 -1.2 -2.8 -0.2
4 -2.6 0.0 -0.2 +0.4

-Interaction 1 +4.2 +2.8 +5.2 +5.8**
2 +4.8* -6.2 -0.8 -4.8
3 +0.6 -2.4 -2.4 -2.8
4 +1.6 -1.0 -1.8 -6.0

ObjectDesc 1 +4.4 +15.8*** +17.0*** +13.4***

AllTranscripts 1 -0.8 -0.6 -2.2 -2.0
2 -15.4*** -16.4*** -6.6** -11.8***
3 -19.8*** -14.0*** -9.2*** -17.2***
4 -25.8*** -19.8*** -15.2*** -11.2**

OnlyTargets 1 +11.2** +8.8* +7.6** -1.2
2 +10.4** -1.0 +7.0** +5.4
3 +5.2 +13.8*** +2.4 +4.0
4 +13.6*** +12.8*** +12.4** +8.4*

FixedOrder 1 -3.0 +0.8 -0.8 -1.4
2 -0.6 -1.6 -6.8** +2.4
3 -5.0* +1.8 -4.8 -4.0
4 -2.2 -1.4 +1.6 0.0

+Feedback 1 +3.2 +1.6 +1.0 -0.2
2 +1.8 +3.8 -0.2 0.0
3 -0.4 -1.0 +0.4 -3.4
4 -1.2 -1.8 -1.4 -2.0

Table 3: Results for the seven follow-up experiments
in Section 7, each differing from the main experiments
(baselines) in Section 6 by one factor. We highlight
significant findings for both performance increase and
decrease, relative to the baseline performance (see Fig-
ure 3) based on paired t-tests for each condition. See
Section 7 for details of each condition.

with only the target objects (since they can choose
from 10 objects rather than 13).

8 Conclusion

Our findings demonstrate that modern LVLMs still
struggle to resolve referring expressions to real-
world objects produced during spontaneous conver-
sation, a task that humans excel at when they can
ground meanings together. Overhearers, whether
human or LVLM, perform more poorly in a match-
ing task than human addressees, even when they are
present to every word of a conversation. LVLMs
in the overhearer role, even state-of-the-art mod-
els, fail to exploit the dynamic nature of conver-
sation and do not improve over repeated referring,
unlike human overhearers. These limitations con-
strain the practical utility of LVLMs as embodied
agents, while also highlighting clear directions for
future improvement. Given that our primary goal
is to benchmark current LVLM capabilities in this
novel overhearing setting, providing mechanistic
insights or finding pathways to solutions is beyond
the scope of our paper; that, we leave to future
studies. We release our corpus for reproducibility
and to support continued research in this area.
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paper. We also note that the observations that hu-
man overhearers improve in efficiency over time,
and yet perform more poorly than actual partici-
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1989; Fox Tree, 1999; Fox Tree and Mayer, 2008;
Wilkes-Gibbs and Clark, 1992).
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large vision-language models (LVLMs) introduces

challenges for evaluation; while we ran each ex-
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A Corpus

In addition to the 80 human-to-human transcribed
dialogues, our corpus also comes with 13 pictures
of baskets (Figure 5) and 13 pictures of dogs (Fig-
ure 6) that were discussed during the original hu-
man experiments and deployed in the LVLM over-
hearer experiments in this paper.

To quantify how referring becomes more effi-
cient over time, we analyzed the average number
of words used by directors and matchers across the
four rounds for each object category (see Figure
7). Linear trend analyses revealed a significant de-
crease in word count as the rounds progressed. For
basket images, directors’ word counts significantly
decreased from 39.94 words in the first round to
15.31 words in the final round, F(1, 38) = 36.05, p
< .001. Matchers’ word counts exhibited a similar
pattern, decreasing from 15.04 to 3.83 words, F(1,
38) = 19.21, p < .001. Comparable trends were
observed for dog images. Directors’ word counts
dropped from 46.05 to 13.84 words, F(1, 38) =

37.96, p < .001, while matchers’ word counts de-
creased from 16.47 to 3.22 words, F(1, 38) = 39.90,
p < .001.

We also examined whether the object category
influenced word counts (a proxy for effort) by com-
paring the average words used per round for baskets
and dogs. On average, pairs used 31.16 words per
round to describe baskets and 32.25 for dogs. A
paired sample t-test found this difference was not
statistically significant, t(9) = -0.34, p = 0.74.

B Experiments

B.1 Details about LVLMs

The specific versions of LVLMs used in our study
are as follows. We used the APIs from the respec-
tive LVLM providers for the first four proprietary
LVLMs. The open-weight models were deployed
locally through Hugging Face and run on 3 Nvidia
RTX A6000s.

• GPT-4o: GPT-4O-2024-08-06

• GPT-4o-mini: GPT-4O-MINI-2024-07-18

• Gemini-2.0-Flash: Accessed in April 2025.

• Claude-3.7-Sonnet: CLAUDE-3-7-SONNET-
20250219.

• Qwen-2.5-VL-7B: Hugging Face model card,
QWEN/QWEN2.5-VL-7B-INSTRUCT

• Qwen-2.5-VL-32B: Hugging Face model
card, QWEN/QWEN2.5-VL-32B-INSTRUCT

• Pixtral-12B: Hugging Face model card,
MISTRALAI/PIXTRAL-12B-2409

B.2 Input Images

We generated 30 different orderings of objects for
both baskets and dogs datasets, in addition to the
two orderings shown in Figure 5 and Figure 6, re-
spectively. These additional images share the same
layout as the ones in Figures 5 and 6 and differ
from the latter only in the specific order of the 13
objects.

To ensure that all LVLMs see the same input
images across multiple rounds as well as across
different human pairs to allow for paired t-tests,
we create a playbook that stores the the specific in-
put image for each run number and for each round
of conversation (1-4). In the main experiments,
we run each model on each transcript from each

https://doi.org/10.18653/v1/2024.emnlp-main.1100
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.1016/0010-0277(83)90004-5
https://doi.org/10.1016/0010-0277(83)90004-5
https://doi.org/10.1016/0010-0277(83)90004-5


Figure 5: The 13 basket pictures from our corpus and an example input image for our experiments. The 10 target
baskets are placed in the first two rows, numbered from 1 to 10, for illustration. Speakers in the original task did not
see the numbers.



Figure 6: The 13 dog pictures from our corpus and an example input image for our experiments. The 10 target dogs
are placed in the first two rows, numbered from 1 to 10, for illustration. Speakers in the original task did not see the
numbers.

Figure 7: Mean number of words used per object across rounds for both Directors and Matchers. The plots for
basket images (left) and dog images (right) both show a clear decrease in word count over time, demonstrating
improved communicative efficiency. Error bars indicate ±1 standard error of the mean.



Starting Round R1 R2 R3
Source Model

Baskets Claude-3.7-Sonnet 0.2* 0.3*** 0.3**
Gemini-2.0-Flash 0.2* 0.1 0.1
GPT-4o 0.1* 0.1 0.1
GPT-4o-mini 0.2** 0.2* 0.4***
Qwen-2.5-VL-32B 0.1 -0.1 0.0
Qwen-2.5-VL-7B -0.3*** -0.4*** -0.1
Pixtral-12B 0.1 -0.3*** 0.3**

Dogs Claude-3.7-Sonnet 0.2* 0.1 0.1
Gemini-2.0-Flash 0.2** 0.1 0.3**
GPT-4o 0.2** 0.0 0.2
GPT-4o-mini 0.0 -0.0 -0.0
Qwen-2.5-VL-32B 0.1 0.0 -0.0
Qwen-2.5-VL-7B 0.0 0.2* -0.2
Pixtral-12B -0.0 -0.0 -0.1

Table 4: Overall performance trend for each LVLM
starting at Ri, using Spearman rank correlation. We
highlight both significant positive and negative trends
and use asterisks to denote different levels of signifi-
cance, where “*” means p < 0.05, “**” means p < 0.01,
and “**” means p < 0.001.

Starting Round R1 R2 R3
Source Model

Baskets Claude-3.7-Sonnet 0.1* 0.3*** 0.3**
Gemini-2.0-Flash 0.1* 0.1 0.1
GPT-4o 0.1* 0.1 0.1
GPT-4o-mini 0.2** 0.2* 0.4***
Qwen-2.5-VL-32B 0.1 -0.1 0.0
Qwen-2.5-VL-7B -0.2*** -0.4*** -0.1
Pixtral-12B 0.1 -0.2*** 0.3**

Dogs Claude-3.7-Sonnet 0.1* 0.1 0.1
Gemini-2.0-Flash 0.2** 0.1 0.2**
GPT-4o 0.2** 0.0 0.1
GPT-4o-mini 0.0 -0.0 -0.0
Qwen-2.5-VL-32B 0.1 0.0 -0.0
Qwen-2.5-VL-7B 0.0 0.2* -0.2
Pixtral-12B -0.0 -0.0 -0.1

Table 5: Overall performance trend for each LVLM
starting at Ri, using Kendall rank correlation. We high-
light both significant positive and negative trends, using
“*” to denote different levels of significance, where “*”
means p < 0.05, “**” means p < 0.01, and “**” means
p < 0.001.

human pair for five times and the model see ex-
actly the same input image for each round num-
ber across 10 human pairs for both baskets and
dogs datasets. The playbook was simply created
by randomly sampling four distinct images from
the generated images for 100 times, although we
only ran each model up to 30 times in our study
(see Section 6.3).

C Results

C.1 Overall Performance Trend

Table 4 and Table 5 shows the overall performance
trend for each LVLM across baskets and dogs us-
ing Spearman rank correlation and Kendall rank
correlation, respectively. The overall results are

consistent with Table 1 in Section 6.
Table 7 shows the percentage of human pairs

for whom LVLMs show a consistent improvement
when starting at Ri. We use OLS regression to
measure if there is a consistent improvement (i.e.,
significant positive coefficient).

Table 6 shows the percentage of time an LVLM’s
performance monotonically increases from a start-
ing round (R1-R3) to the end round (R4) over all
runs of each model. We report three levels of
“monotonically increases”: (1) monotonically in-
creasing or non-decreasing, (2) monotonically in-
creasing with a positive slope, meaning that model
performance at the end round must surpass the
starting round, and (3) strictly monotonically in-
creasing, where we require that model performance
on a round must be better than that of a previous
round. As can be seen in Table 6, if we use the
strictest measurement, none of the tested LVLMs
show more than 6% strictly monotonically increas-
ing performance.

C.2 Starting Early Versus Starting Late
Table 8 shows the pairwise mean differences of
overlapping rounds between an early start and a
late start. Here, the overlap rounds can be one
round or multiple rounds. For example, the overlap-
ping rounds between R1-R4 and R2-R4 are R2-R4,
whereas the verlapping round between R1-R4 and
R4 is just R4.

Table 9 shows the pairwise mean differences
between an early start and a late start. Here, we are
comparing two single starting rounds, such as R1
versus R2, R1 versus R4 etc.

C.3 Performance Difference between Human
Pairs

Table 10 shows the mean model performance differ-
ence between different human pairs when doing the
overhearer matching task based on the first rounds
of conversations. We use paired t-tests to determine
a significant difference.

We hypothesize that the performance variations
may be due to different levels of information den-
sity in transcripts of different human pairs. We use
five simple features to measure information density
of a transcript: number of words, number of sen-
tences, number of utterances, number of director
turns, and number of matcher turns. We correlate
these features with the average model performance
and find that none of these correlations are statisti-
cally significant. See Table 11 for details.



Starting Round R1 R2 R3
Source Model

Baskets Claude-3.7-Sonnet 36.0 / 24.0 / 4.0 56.0 / 50.0 / 12.0 86.0 / 58.0
Gemini-2.0-Flash 22.0 / 22.0 / 2.0 34.0 / 32.0 / 6.0 76.0 / 44.0
GPT-4o 26.0 / 26.0 / 6.0 42.0 / 32.0 / 2.0 72.0 / 46.0
GPT-4o-mini 18.0 / 16.0 / 0.0 36.0 / 32.0 / 6.0 84.0 / 66.0
Qwen-2.5-VL-32B 10.0 / 10.0 / 2.0 26.0 / 16.0 / 6.0 62.0 / 40.0
Qwen-2.5-VL-7B 6.0 / 4.0 / 0.0 14.0 / 2.0 / 0.0 62.0 / 22.0
Pixtral-12B 18.0 / 16.0 / 2.0 22.0 / 8.0 / 0.0 82.0 / 44.0

Dogs Claude-3.7-Sonnet 46.0 / 30.0 / 2.0 54.0 / 30.0 / 4.0 84.0 / 48.0
Gemini-2.0-Flash 36.0 / 32.0 / 2.0 56.0 / 38.0 / 6.0 88.0 / 60.0
GPT-4o 22.0 / 20.0 / 0.0 52.0 / 36.0 / 8.0 85.4 / 52.1
GPT-4o-mini 12.0 / 12.0 / 4.0 26.0 / 26.0 / 6.0 60.4 / 31.2
Qwen-2.5-VL-32B 14.0 / 14.0 / 2.0 22.0 / 20.0 / 8.0 60.0 / 40.0
Qwen-2.5-VL-7B 10.0 / 10.0 / 0.0 44.0 / 34.0 / 18.0 54.0 / 22.0
Pixtral-12B 28.0 / 28.0 / 0.0 42.0 / 30.0 / 2.0 64.0 / 36.0

Table 6: Percentage of time an LVLM’s performance monotonically increases from a starting round (R1-R3) to
the end round (R4). We report the following numbers in the table, separated by “/” in each cell: percentage of of
monotonically increasing, percentage of of monotonically increasing with a positive slope (the model performance
on the end round must be greater than the starting round), and percentage of strictly monotonically increasing
(model performance on each round is strictly greater than that on the previous round). For a R3 start, there are
only 2 rounds (R3 and R4), so the last two numbers are identical and we only report one in the R3 column. Again,
proprietary LVLMs are overall more likely to show monotonically increasing performance.

Source Baskets Dogs
R1 R2 R3 R1 R2 R3

Claude-3.7-Sonnet 20 30 20 10 0 0
Gemini-2.0-Flash 30 10 0 10 0 10
GPT-4o 10 0 0 10 0 0
GPT-4o-mini 30 20 20 0 0 0
Qwen-2.5-VL-32B 0 0 0 20 0 10
Qwen-2.5-VL-7B 0 0 0 0 20 0
Pixtral-12B 0 0 10 0 0 0

Table 7: Percentage of human pairs for which LVLMs
show a consistent improvement when starting at Ri.

C.4 Error Analyses
Figure 8 and Figure 9 shows the percentage of time
an LVLM fails to identify a target object placed
at a position index i across 13 positions and the
specific object among 10 target objects for the two
datasets, respectively. The two types of analyses
are based only on experiments from R1 through
R4 to control the effect of different starting rounds.
However, our visualizations based on all the main
experiments described in Section 5 show similar
patterns.



Late Start → R2-R4 R3-R4 R4
Source Model Early Start ↓

Baskets Claude-3.7-Sonnet R1-R4 1.4 11.6*** 15.6***
R2-R4 - 13.0*** 19.0***
R3-R4 - - 8.0*

Gemini-2.0-Flash R1-R4 3.1* 10.2*** 10.4**
R2-R4 - 9.7*** 12.2***
R3-R4 - - 2.0

GPT-4o R1-R4 8.4*** 17.9*** 15.6***
R2-R4 - 9.2*** 9.0**
R3-R4 - - -0.2

GPT-4o-mini R1-R4 3.9** 4.4* 4.2
R2-R4 - 3.6 0.0
R3-R4 - - 0.8

Qwen-2.5-VL-32B R1-R4 2.7 0.8 -1.4
R2-R4 - -1.8 -3.6
R3-R4 - - 1.4

Qwen-2.5-VL-7B R1-R4 -4.0** -2.9* -10.4***
R2-R4 - -1.2 -9.8***
R3-R4 - - -8.6***

Pixtral-12B R1-R4 1.9 2.3 -1.2
R2-R4 - -1.1 -4.4**
R3-R4 - - -1.2

Dogs Claude-3.7-Sonnet R1-R4 2.9 9.6*** 16.4***
R2-R4 - 7.0** 12.4***
R3-R4 - - 8.6**

Gemini-2.0-Flash R1-R4 2.3 15.9*** 8.0**
R2-R4 - 13.9*** 8.8*
R3-R4 - - -2.4

GPT-4o R1-R4 2.2 16.1*** 11.4***
R2-R4 - 15.9*** 9.6**
R3-R4 - - -2.1

GPT-4o-mini R1-R4 0.3 -4.4* 0.0
R2-R4 - -5.6** -3.4
R3-R4 - - 2.9

Qwen-2.5-VL-32B R1-R4 0.9 3.8 10.2**
R2-R4 - 0.5 7.8*
R3-R4 - - 8.0**

Qwen-2.5-VL-7B R1-R4 -12.8*** -5.2*** -4.0
R2-R4 - 8.8*** 12.8***
R3-R4 - - 1.0

Pixtral-12B R1-R4 -2.3 -1.3 -1.4
R2-R4 - -1.1 -2.0
R3-R4 - - -0.2

Table 8: Pairwise mean differences of performance on overlapping rounds between an early start (R1-R4-R3-R4 in
the rows) and a late start (R2-R4-R4 in the columns). For example, the overlapping rounds for R1-R4 and R2-R4
are R2-R3-R4, and for R2-R4 and R3-R4 they are R3-R4. We use paired t-tests to determine if there is a significant
difference between two different starts and highlight both significant positive and negative mean differences. We
indicate significance level using asterisks: “*” means p < 0.05, “**” means p < 0.01, and “**” means p < 0.001. In
each round, there are 50 experiments (10 human pairs times 5 runs of an LVLM), so the degree of freedom is 100
times “number of overlapping rounds” minus 1.



Late Start → R2 R3 R4
Source Model Early Start ↓

Baskets Claude-3.7-Sonnet R1 1.2 11.2*** 9.8**
R2 - 10.0*** 8.6**
R3 - - -1.4

Gemini-2.0-Flash R1 -7.0* 2.2 -0.4
R2 - 9.2** 6.6**
R3 - - -2.6

GPT-4o R1 4.8 14.0** 10.2**
R2 - 9.2* 5.4
R3 - - -3.8

GPT-4o-mini R1 -2.2 4.0 -8.4**
R2 - 6.2* -6.2*
R3 - - -12.4***

Qwen-2.5-VL-32B R1 -6.4* -4.8 -5.4
R2 - 1.6 1.0
R3 - - -0.6

Qwen-2.5-VL-7B R1 -9.6*** 0.8 -4.8*
R2 - 10.4*** 4.8
R3 - - -5.6*

Pixtral-12B R1 -4.6* 1.8 -3.6*
R2 - 6.4*** 1.0
R3 - - -5.4**

Dogs Claude-3.7-Sonnet R1 -0.6 5.4 9.0**
R2 - 6.0 9.6*
R3 - - 3.6

Gemini-2.0-Flash R1 -6.4 9.6** -2.8
R2 - 16.0*** 3.6
R3 - - -12.4***

GPT-4o R1 -6.4 9.4** -0.8
R2 - 15.8*** 5.6
R3 - - -10.2**

GPT-4o-mini R1 -4.4 -5.9* -1.6
R2 - -1.5 2.8
R3 - - 4.3

Qwen-2.5-VL-32B R1 -4.8 -1.6 5.2
R2 - 3.2 10.0*
R3 - - 6.8*

Qwen-2.5-VL-7B R1 -10.2 -8.6** -2.6
R2 - 1.6 7.6
R3 - - 6.0*

Pixtral-12B R1 -12.4* 0.0 0.0
R2 - 12.4* 12.4*
R3 - - 0.0

Table 9: Pairwise mean differences between an early start (R1-R3 in the rows) and a late start (R2-R4 in the
columns). We use paired t-tests to determine if there is a significant difference between two different starts and
highlight both significant positive and negative mean differences. We indicate significance level using asterisks:
“*” means p < 0.05, “**” means p < 0.01, and “**” means p < 0.001. In each round, there are 50 experiments (10
human pairs times 5 runs of an LVLM), so the degree of freedom is 99.



Pair2 → P2 P3 P4 P5 P6 P7 P8 P9 P10
Source Model Pair1 ↓

Baskets GPT-4o P1 32.0*** 29.0*** 25.0*** 6.0** 31.7*** 3.7 19.7*** 17.7*** 15.7***
P2 - -3.0 -7.0 -26.0*** -0.3 -28.3*** -12.3** -14.3*** -16.3***
P3 - - -4.0 -23.0*** 2.7 -25.3*** -9.3* -11.3** -13.3***
P4 - - - -19.0*** 6.7 -21.3*** -5.3 -7.3 -9.3*
P5 - - - - 25.7*** -2.3 13.7*** 11.7*** 9.7**
P6 - - - - - -28.0*** -12.0** -14.0** -16.0***
P7 - - - - - - 16.0*** 14.0*** 12.0***
P8 - - - - - - - -2.0 -4.0
P9 - - - - - - - - -2.0

Gemini-2.0-Flash P1 12.7*** 26.3*** 28.3*** 3.7 55.0*** 13.0*** 14.7*** 25.7*** 23.7***
P2 - 13.7** 15.7** -9.0* 42.3*** 0.3 2.0 13.0*** 11.0**
P3 - - 2.0 -22.7*** 28.7*** -13.3** -11.7** -0.7 -2.7
P4 - - - -24.7*** 26.7*** -15.3** -13.7** -2.7 -4.7
P5 - - - - 51.3*** 9.3** 11.0* 22.0*** 20.0***
P6 - - - - - -42.0*** -40.3*** -29.3*** -31.3***
P7 - - - - - - 1.7 12.7*** 10.7*
P8 - - - - - - - 11.0** 9.0*
P9 - - - - - - - - -2.0

Dogs GPT-4o P1 -10.0** 10.0** 13.7*** 5.0 12.3*** -6.0 -5.3 8.0* -3.3
P2 - 20.0*** 23.7*** 15.0*** 22.3*** 4.0 4.7 18.0*** 6.7
P3 - - 3.7 -5.0 2.3 -16.0*** -15.3*** -2.0 -13.3***
P4 - - - -8.7** -1.3 -19.7*** -19.0*** -5.7* -17.0***
P5 - - - - 7.3* -11.0* -10.3** 3.0 -8.3**
P6 - - - - - -18.3*** -17.7*** -4.3 -15.7***
P7 - - - - - - 0.7 14.0** 2.7
P8 - - - - - - - 13.3*** 2.0
P9 - - - - - - - - -11.3***

Gemini-2.0-Flash P1 6.3 26.0*** 2.4 3.3 18.6*** 0.0 -7.0** 16.7*** 8.3*
P2 - 19.7*** -3.1 -3.0 12.4** -6.3 -13.3** 10.3* 2.8
P3 - - -22.1*** -22.7*** -8.6* -26.0*** -33.0*** -9.3* -17.6***
P4 - - - 0.3 16.1*** -2.1 -9.7** 13.8*** 5.4
P5 - - - - 15.2*** -3.3 -10.3*** 13.3*** 5.5
P6 - - - - - -18.6*** -25.5*** -1.4 -8.9**
P7 - - - - - - -7.0* 16.7*** 8.3
P8 - - - - - - - 23.7*** 14.8***
P9 - - - - - - - - -9.0*

Table 10: Mean model performance difference between human pair 1 and pair 2 when doing the overhearer matching
task based on the first rounds of conversations for 30 runs, each with a different object ordering. We use paired
t-tests to determine if there is a significant difference between each human pair and highlight both significant
positive and negative mean differences. We indicate significance level using asterisks: “*” means p < 0.05, “**”
means p < 0.01, and “**” means p < 0.001. In each comparison, there are 30 experiments for each human pair, so
the degree of freedom is 59.

Figure 8: Percentage of times an LVLM fails to identify the correct object at index i for the two datasets. The
position index ranges from 1 to 13, since there are 13 objects for the overhearer and the target objects are shuffled
across these positions.



Kendall Tau Kendall p-value Spearman R Spearman p-value
Source Model Feature

Baskets Gemini-2.0-Flash # Words -0.02 1.00 0.02 0.96
# Sentences -0.38 0.16 -0.52 0.13
# Utterances -0.16 0.60 -0.18 0.63
# Director Turns -0.37 0.15 -0.46 0.18
# Matcher Turns -0.40 0.11 -0.49 0.15

GPT-4o # Words 0.11 0.73 0.19 0.60
# Sentences -0.16 0.60 -0.18 0.63
# Utterances -0.02 1.00 -0.04 0.91
# Director Turns -0.18 0.47 -0.24 0.51
# Matcher Turns -0.22 0.37 -0.29 0.41

Dogs Gemini-2.0-Flash # Words 0.18 0.47 0.29 0.41
# Sentences -0.04 0.86 -0.01 0.99
# Utterances 0.18 0.47 0.24 0.50
# Director Turns 0.18 0.47 0.25 0.49
# Matcher Turns 0.18 0.47 0.24 0.50

GPT-4o # Words 0.38 0.16 0.53 0.12
# Sentences 0.24 0.38 0.26 0.47
# Utterances 0.38 0.16 0.50 0.14
# Director Turns 0.20 0.48 0.28 0.43
# Matcher Turns 0.16 0.53 0.21 0.57

Table 11: Correlations between average model performance based the 30 runs of an LVLM on R1 transcripts and
the features of the related transcripts. None of these correlations are significant.

Figure 9: Percentage of times an LVLM fails to identify each one of the 10 target objects for the two datasets. The
object index corresponds to those in Figure 5 for baskets and in Figure 6 for dogs.



D Prompt Templates

This section provides prompt templates for all ex-
periments in this study. We use “$” followed by a
word to denote a placeholder.

D.1 Prompt Template for Main Experiments
Figure 10 shows the prompt template used for the
main experiments in Section 6. Each prompt con-
tains a system prompt and a user prompt, where
the system prompt is provided only once in the
very beginning, whereas the user prompt may be
used multiple times in case of a multi-turn conver-
sation (the starting round is other than R4). Note
that in the system prompts, “$example_sequence”
(default=“3, 7, 1, 12, 5, 2, 13, 8, 10, 4, 6, 9, 11”)
is fixed for a given value of “$num_of_objects”
(default=13) to maximize prompt similarity across
different prompting conditions.

D.2 Prompt Templates for Follow-Up
Experiments

We prompted GPT-4.1-2025-04-14 to remove the
colloquial and interactive features from our corpus.

D.2.1 Prompt Template for Removing
Colloquial Features

You are given an excerpt from a transcribed,
spontaneous conversation between two indi-
viduals. Your task is to revise the excerpt to
produce a clear, polished version of the dialogue
that reads like formal written text. Transform
any standalone words or phrases into complete,
grammatically correct sentences where appropri-
ate. Do not add any additional information or
context or change the meaning of the text. Do
not output anything other than the revised excerpt.

Here is the excerpt: $excerpt

Revised Excerpt:

D.2.2 Prompt Template for Creating Object
Summaries

You are given an excerpt from a transcribed, spon-
taneous conversation between two individuals.
Your task is to extract and concisely summarize
all descriptions used to characterize a specific
object mentioned in the excerpt. You must follow
the instructions below:

1. Preserve all relevant descriptive details.

2. Do not alter the meaning, add context, or intro-
duce new information.

3. Your response must only include the final
summary—do not include the original excerpt or
any explanatory text.

Excerpt:

$excerpt

Summary of Object Descriptions:

D.2.3 Prompt Template for Providing
Transcripts without Colloquial Features

We re-use the same prompt template from Fig-
ure 10 when providing LVLMs with transcripts
with colloquial features removed (+Formal).

Appendix D.2.1 shows the prompt template used
for removing colloquial features from a transcript.

D.2.4 Prompt Template for Providing Object
Summaries

Figure 11 shows the prompt template we used for
providing LVLMs with all 10 target object sum-
maries at once, instead of the original transcript
-Interaction). Each prompt contains a system
prompt and a user prompt, where we repeat the
user prompt four times, containing 10 object sum-
maries and the related input image from each round
in order. We then concatenate these repeated user
prompts together to prompt the LVLMs.

Appendix D.2.2 shows the prompt template used
for creating object summaries from a given tran-
script.

D.2.5 Prompt Template for Providing One
Object Description at a time

Figure 12 shows the prompt template we used for
providing a complete and manually segmented de-
scription of a target object (ObjectDesc) one at a
time.

D.2.6 Prompt Template for Providing All
Transcripts At Once

Figure 13 shows the prompt template we used
for providing LVLMs with all transcripts at once
(AllTranscripts). Each prompt contains a system
prompt and a user prompt, where we repeat the
user prompt four times, containing the transcript
and the related input image from each round in
order. We then concatenate these repeated user
prompts together to prompt the LVLMs.

D.2.7 Prompt Template for Providing LVLMs
with Feedback

We re-use the same prompt we used in the main
experiments in Section 6, as shown in Figure 10.
After an LVLMs produces its answer to each round,
we insert the following prompt with the correct
target sequence before proceeding to the next round
of the matching task.



You are an overhearer of a conversation between two participants engaged in a collaborative
object-matching task for one or multiple rounds. Each participant is in a separate room and has a
duplicate set of pictures arranged in different random orders. They cannot see each other’s sets and
communicate solely via an audio link. During the task, one participant acts as the Director (D) and
the other as the Matcher (M). The Director describes the pictures one at a time, and the Matcher
selects the corresponding picture from their own set. Please note that it is the same two participants
playing the same roles for all the rounds if there are multiple rounds.

As the overhearer and for each round, you are provided with:

- The full transcript of their conversation for that round.
- An image showing all pictures used in the task, randomly arranged and labeled with indices from 1
to $num_of_objects. The image for each round may be different.

Your goal is to determine the correct sequence of picture indices as described by the Director during
each round. To do this:

1. Carefully analyze the transcript to understand which pictures the Director refers to, in the order
they were described.
2. Use the image to match each described picture to its corresponding index.
3. Think step by step and revise your reasoning and answers as needed. However, you may not ask
questions or make assumptions beyond the given materials.

When you reach your conclusion, output your response in the following format:

Final Answer: [$num_of_objects picture indices in correct order, separated by commas]

Example: $example_sequence

The transcript of the current conversation is as follows:

$transcript

The image for the current round showing the pictures is as follows:

<$image_path>

Figure 10: Prompt template for the experiments where the transcripts are presented one at a time in a multi-turn
conversation. The user prompt at the bottom is repeated up to 4 times before each transcript/image pair in our
experiments.

Here is correct sequence of picture indices as de-
scribed by the Director: $answer. Reflect on your
previous answer if it was wrong. We will proceed
after your reflection.



You are an overhearer of a conversation between two participants engaged in a collaborative
object-matching task for one or multiple rounds. Each participant is in a separate room and has a
duplicate set of pictures arranged in different random orders. They cannot see each other"s sets and
communicate solely via an audio link. During the task, one participant acts as the Director (D) and
the other as the Matcher (M). The Director describes the pictures one at a time, and the Matcher
selects the corresponding picture from their own set. Please note that it is the same two participants
playing the same roles for all the rounds if there are multiple rounds.

As the overhearer and for each round, you are provided with:

- 10 object summaries based on the Director’s description of the target pictures for that round.
- An image showing all pictures used in the task, randomly arranged and labeled with indices from 1
to $num_of_objects. The image for each round may be different.

Your goal is to determine the correct sequence of picture indices as described by the Director during
each round. To do this:

1. Carefully analyze the transcript to understand which pictures the Director refers to, in the order
they were described.
2. Use the image to match each described picture to its corresponding index.
3. Think step by step and revise your reasoning and answers as needed. However, you may not ask
questions or make assumptions beyond the given materials.

When you reach your conclusion, output your response in the following format:

Final Answer: [$num_of_objects picture indices in correct order, separated by commas]

Example: $example_sequence

The 10 object summaries based on the Director’s description are as follows:

$summaries

The image for the current round showing the pictures is as follows:

<$image_path>

Figure 11: Prompt template for the experiments where the summaries of 10 target object summaries from a given
transcript are presented, instead of the original transcript (-Interaction), one at a time in a multi-turn conversation.
The user prompt at the bottom is repeated up to 4 times before each transcript/image pair in our experiments.



You are an overhearer of an ongoing conversation between two participants engaged in a
collaborative object-matching task. Each participant is in a separate room and has a duplicate set
of pictures arranged in different random orders. They cannot see each other"s sets and they can
communicate solely via an audio link. During the task, one participant acts as the Director (D) and
the other as the Matcher (M). The Director describes the pictures one at a time, and the Matcher
selects the corresponding picture from their own set.

As the overhearer and for each target picture, you are provided with:

- An image showing all pictures used in the task, randomly arranged and labeled with indices from 1
to $num_of_objects.
- Conversation between the Director (D) and Matcher (M) where the Matcher indicates that they
have selected a target picture.

Your goal is to determine the correct sequence of picture indices as described by the Director during
the task. To do this:

1. Carefully analyze each conversation to understand which pictures the Director refers to, in the
order they were described.
2. Use the image to match each described picture to its corresponding index.

3. Think step by step and revise your reasoning and answers as needed. However, you may not ask
questions or make assumptions beyond the given materials.

You should produce a target picture index for each conversation presented to you as your current
best guess. Once all the 10 pictures have been selected by the Matcher, you should reach a final
conclusion and output your response in the following format:

Final Answer: [$num_of_objects picture indices in correct order, separated by commas]

Example: $example_sequence

The image showing the pictures is as follows:

<$image_path>

The conversation between the Director (D) and Matcher (M) for the first target picture is as follows:

$conversation

Figure 12: Prompt template for the experiments where a complete and manually segmented description of a target
object (ObjectDesc) is provided one at a time in a multi-turn conversation. The user prompt at the bottom is
repeated up to 10 times before each one of the 10 target objects’ descriptions extracted from the transcript.



You are an overhearer of a conversation between two participants engaged in a collaborative
object-matching task for multiple rounds. Each participant is in a separate room and has a
duplicate set of pictures arranged in different random orders. They cannot see each other’s sets and
communicate solely via an audio link. During the task, one participant acts as the Director (D) and
the other as the Matcher (M). The Director describes the pictures one at a time, and the Matcher
selects the corresponding picture from their own set. Please note that it is the same two participants
playing the same roles for all the rounds.

As the overhearer, you are provided with:

- The full transcripts of their conversation for each round.
- Images showing all pictures used in the task for each round, randomly arranged and labeled with
indices from 1 to $num_of_objects.

Your goal is to determine the correct sequence of picture indices as described by the Director for
each round. To do this:

1. Carefully analyze the transcript to understand which pictures the Director refers to, in the order
they were described.
2. Use the image to match each described picture to its corresponding index.
3. Think step by step and revise your reasoning and answers as needed. However, you may not ask
questions or make assumptions beyond the given materials.

When you reach your conclusion, output your response in the following JSON format for each
round:

Final Answer: {“Round i”: [$num_of_objects picture indices in correct order, separated by
commas]}

Example: {“Round 1”: [$example_sequence], ...}

The transcript of the conversation during round#$ix is as follows:

$transcript

The image for the round#$ix showing the pictures is as follows:

<$image_path>

Figure 13: Prompt template for the experiments where multiple transcripts are presented together (AllTranscript)
in a single-turn conversation. While we repeat the user prompt at the bottom four times for the four rounds, they are
concentrated together and passed to an LVLM all at once.
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