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Abstract

Attention-based language models commonly
rely on the softmax function to convert atten-
tion logits into probability distributions. How-
ever, this softmax re-weighting can lead to at-
tention entropy collapse, in which attention dis-
proportionately concentrates on a single token,
ultimately causing training instability. In this
work, we identify the high variance sensitivity
of softmax as a primary cause of this collapse.
We show that entropy-stable attention meth-
ods, which either control or are insensitive to
the variance of attention logits, can prevent en-
tropy collapse and enable more stable training.
We provide empirical evidence of this effect
in both large language models (LLMs) and a
small Transformer model composed solely of
self-attention and support our findings with the-
oretical analysis. Moreover, we identify that
the concentration of attention probabilities in-
creases the probability matrix norm, leading to
the gradient exploding.

1 Introduction

Large language models (LLMs) rely on the atten-
tion mechanism, where attention logits (query—key
dot products) are converted into probability dis-
tributions via the softmax function to capture the
relative importance of tokens. However, this pro-
cess can result in excessive focus on a single token,
leading to attention entropy collapse (also known
as attention sink) (Zhai et al., 2023; He et al., 2024,
Xiao et al., 2024; Guo et al., 2025, 2024; Yu et al.,
2024). Previous studies suggest that multiple fac-
tors contribute to this collapse, including large at-
tention logits (Xiao et al., 2024; Wortsman et al.,
2024; Dehghani et al., 2023; He et al., 2024), ex-
ploding norms of hidden states or activations (Sun
et al., 2024), and specific model components such
as layer normalization, residual connections (He
et al., 2016), and MLP layers (Gu et al., 2025;
Cancedda, 2024). However, there is still no clear

theoretical understanding of why entropy collapse
occurs.

The core issue of attention entropy collapse in
softmax-based attention lies in the exponential na-
ture of the softmax function. The softmax function
amplifies differences in attention logits, leading to a
disproportionate concentration on a single token as
the gap between attention logits grows. This prop-
erty leads to attention entropy collapse, forcing the
attention probabilities to collapse into near one-hot
vectors and resulting in training instability.

We compare several attention methods and
find that ReLU kernel attention (Choromanski
et al., 2021; Qin et al., 2022) and QK-LayerNorm
(Gilmer et al., 2023) maintain higher attention en-
tropy and lead to more stable training than softmax-
based attention, including Softmax and Window
Softmax (Beltagy et al., 2020). Figure 1 illustrates
this phenomenon in both open-source LLMs (top)
and a simple, attention-only Transformer model
(bottom). Specifically, softmax-based attention re-
sults in a progressive decrease in attention entropy
(third column), which in turn increases the norm
of the attention probability matrix (fourth column),
leading to unstable gradients and loss spikes (sec-
ond and first columns, respectively). In contrast,
ReLU kernel attention and QK-LayerNorm pre-
serve higher attention entropy and maintain lower
norms of the attention matrix and gradients.

To better understand the distinct behaviors of
attention methods, we analyze their insensitivity
and controllability with respect to attention log-
its variance. Both theoretical and empirical evi-
dence reveal that, in softmax, entropy decreases
with increasing variance. This implies that higher
variance results in significantly lower entropy, high-
lighting its high variance sensitivity. By contrast,
our analysis shows that ReLLU kernel attention is
theoretically entropy-stable, as its entropy remains
stable even when the variance of the input logits
becomes large. We further provide an analysis of
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Figure 1: Training behaviors of LLaMA-1B (top, N

Training Step Training Step

768) and a small-scale Transformer model (bottom,

N = 20,W = 8). From left to right, each column shows the training loss (Loss), gradient norm (Gradient Norm),
the attention entropy with + standard deviation across all layers (Attn. Entropy), and the average Frobenius norm of
the attention probability matrix across all layers (|| P|| z). In the third column, as the attention probability becomes

uniform, the attention entropy reaches its maximum (log NV, dotted line). In the fourth column,

P|| reaches its

maximum (v/ N, dashed-dotted line) when attention entropy collapse (¥) occurs and its minimum (dotted line)
under a uniform attention distribution, following Proposition 5.3.

QK-LayerNorm, introduced to address the issue
of large-magnitude attention logits, and show that
it effectively controls variance and contributes to
preserving attention entropy. However, we also find
that, due to the presence of softmax, it remains sen-
sitive to variance, and its behavior strongly depends
on the setting of the scaling parameter.

Moreover, we provide a clear and focused anal-
ysis of the cause of training instability induced by
attention entropy collapse. Several studies have in-
vestigated this cause, including softmax saturation
and gradient exploding (Dehghani et al., 2023),
sharp loss surfaces due to query—key spectral norm
blow-up—addressed by the cReparam (Zhai et al.,
2023), and outlier activations that disrupt gradient
flow (He et al., 2024). Howeyver, the exact cause of
the instability remains unclear. Our experiments,
conducted across both large and small models, re-
veal a strong correlation between the decrease in
attention entropy and spikes in the gradient norm.
As shown in Figure 1 (second column), the gra-
dient norm explodes at the point where the atten-
tion entropy decreases sharply or approaches zero
during training (third column), indicating a direct
relationship with instability. As attention probabili-
ties become increasingly concentrated, the norm of
the attention probability matrix, || P||r, increases

rapidly (fourth column), which in turn increases
the gradient norm of self-attention output during
backpropagation.

To summarize, we make the following contribu-
tions:

* We identify the variance sensitivity of the re-
weighting function as the cause of attention
entropy collapse. Empirically, we show that
attention methods less sensitive to attention
logits variance can prevent this collapse and
lead to more stable training, in both small and
large models.

We provide both theoretical and empirical evi-
dence that softmax-based attention is highly
sensitive to logit variance, whereas ReLU ker-
nel attention remains entropy-stable. Further-
more, QK-LayerNorm offers variance control-
lability, but retains softmax-induced sensitiv-
ity that depends on the scaling parameter.

We establish that a decrease in attention en-
tropy increases the norm of the attention prob-
ability matrix, which increases the gradient
norm of the attention output, ultimately lead-
ing to exploding gradients.
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2 Related Works

Several studies have examined the concentration of
probability on a single token, leading to attention
entropy collapse. The large spectral norms tighten
the lower bound of attention entropy, leading to
sharper attention probability distributions, causing
training instability (Zhai et al., 2023). As the se-
quence length grows, a log-scale increase in the
top query-key score can cause softmax to dispro-
portionately amplify it, concentrating attention on
only a few tokens (Song et al., 2025). Furthermore,
as the magnitude of attention logits increases, atten-
tion probabilities tend to collapse into near-one-hot
vectors, thereby exacerbating training instability
(Noci et al., 2023; Kedia et al., 2024). Various nor-
malization methods have been proposed to allevi-
ate the attention entropy collapse. Representative
methods include QK-LayerNorm (Dehghani et al.,
2023), QKNorm (Henry et al., 2020), Softmax-1
(adding 1 to the denominator) (Kaul et al., 2025;
Miller, 2023), NormSoftmax (Jiang et al., 2023),
and HybridNorm (Zhuo et al., 2025). This collapse
is characterized by an excessive attention bias to-
ward initial tokens (Barbero et al., 2025), com-
monly referred to as attention sink (Xiao et al.,
2024). Large activations in a few units concen-
trate attention on their associated tokens (Sun et al.,
2024). Empirical analysis reveals that factors such
as QK angles, optimization strategies, data distri-
bution, loss functions, and model architecture also
influence this phenomenon (Gu et al., 2025). More-
over, as value norms decrease, residual-state peaks
emerge, exacerbating attention sink by causing
value-state drains (Guo et al., 2025). Recent work
replaces softmax with unnormalized sigmoid atten-
tion to mitigate attention sink and improve training
stability (Fu et al., 2025). While prior works focus
on attention logit scale, we focus on the sensitivity
to the attention logits variance.

3 Background

3.1 Softmax-based Attention

Given an input X € RV*P where N denotes the

sequence length and D the hidden dimension, we
define the three components of a single-head atten-
tion —query Q € RV*P key K € RV*P value
V € RY¥XP_by multiplying X by each corre-
sponding weight W, Wi, Wy € RP*D_ The ith
row vector A; € R P of self-attention’s output
A € RN*P and (i, j)th elements of the attention

probability matrix P € RV*¥ are defined as fol-
lows:

N .
s K;
A= ZPMV]- and P; ; = ;m(.Q i) ;
j=1 > k=1 Sim(Q;, Ky,

where sim(-) is a real-valued function that mea-

sures the similarity between query and key.
Softmax-based attention uses the exponentiated

query-key dot product for the similarity function

sim(Q;, Kj) = eXp(QinT)

and the corresponding attention probability matrix
is

o exp(QZ»KjT)
Y exp(Qik))

We refer to Z = QK ' € RV*N ag the attention
logits.

ey

Window Softmax Attention In window atten-
tion, each query at position ¢ attends only to the
keys within a fixed window from K;_w to K; W,
where W is the window size. Accordingly, the at-
tention probability in (1) is replaced with:

-
Y A '
> kmi-w exXP(QiK))
Restricting attention to a local window prevents
excessive focus on a single token and promotes rel-

atively uniform attention probabilities (Dong et al.,
2024; Gu et al., 2025).

3.2 Query-Key Normalization (Gilmer et al.,
2023)

To alleviate large attention logits, which can lead
to the concentration of attention on a single token,
Gilmer et al. (2023) apply Layer Normalization
(LN) (Baet al., 2016) to both () and K before the
dot product, modifying the attention formulation
in (1). We define the normalized attention logits of
QK-LayerNorm as

Zi5 = LN(Qi)LN(K;) T, )
and compute the attention probability as
LN _ exp(Z;7)
Li T N )
2 k=1 eXP(ZiL,}:I)

By enhancing training stability (Rybakov et al.,
2024), QK-LayerNorm has become a widely used
component in many recent LLMs.

3)
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3.3 Linear Kernelized Attention

To mitigate the quadratic complexity of traditional
attention methods, kernelized self-attention approx-
imates the similarity function using a kernel func-
tion ¢ : RIXP — RI*P a5 follows:

sim(Q;, K;) ~ ¢(Q:)(K;) . )

Instead of applying softmax directly, kernelized
self-attention uses a kernel function ¢ to approx-
imate similarity. By exploiting the associativity
of matrix multiplication, it avoids explicit com-
putation of the attention matrix and reduces the
quadratic time complexity to linear, as follows:

o PRIT )TV,
ECHPRTL N )
P HQIOU)T
YT oK)

While prior works on kernelized attention mainly
focus on choosing kernel functions that better ap-
proximate softmax attention such as ReLU (with
re-weighting) (Qin et al., 2022; Cai et al., 2023;
Han et al., 2023) and ELU+-1 (Katharopoulos et al.,
2020), our work instead examines kernel function
from the perspective of training stability.

In particular, we focus on Lipschitz-continuous
kernel functions, which bound the rate of change
during the re-weighting from attention logits to
probabilities. We use ReLU, ELU+-1, and Sigmoid
as Lipschitz-continuous kernel functions, which
are widely used and ensure non-negative values.

3.4 Attention Entropy

The entropy of each row P; of the attention prob-
ability matrix P, also called attention entropy, is
defined as follows:

N
H(P)==} _ PjlogPj  (©

To compute the average attention entropy across all
rows, we take the mean of H(F;) over all N rows:

HP) =S HE). @

When the attention probabilities in a given row
P; become overly concentrated on a single token,
forming a near one-hot distribution, the attention
entropy H (P;) approaches zero. If this occurs for
all rows, the attention entropy also collapses to
zero, a phenomenon known as attention entropy

collapse. This collapse is illustrated in the attention
heatmaps in Appendix G.

Although attention sink is a phenomenon similar
to attention entropy collapse, it differs in how the
statistics are aggregated. The sink metric computes
attention column-wise over K, thereby discarding
row-wise information (Gu et al., 2025). By con-
trast, attention entropy is computed for each Q);
over K in the row distribution P; (the dimension
along which softmax is applied), and thus it more
faithfully captures how the entropy of P; responds
to variance of Z; ; across K.

4 Empirical Analysis of Attention
Entropy Collapse and Training
Instability

In this section, we empirically compare softmax-
based and entropy-stable attention, focusing on at-
tention entropy collapse leading to training instabil-
ity. First, in Section 4.1, we report and analyze em-
pirical findings on attention entropy collapse and
training instability observed in open-source LLMs,
LLaMA (Touvron et al., 2023) and GPT-2 (Radford
et al., 2019). Furthermore, in Section 4.2, we con-
duct experiments on a simple regression task using
a simple and small architecture composed solely
of self-attention layers to isolate the effects of the
re-weighting functions, ensuring that the influence
of other factors is minimized. The experimental set-
tings for both experiments are detailed in Appendix
C.

4.1 LLM Pre-training

Experimental Results We observe that softmax
attention experiences a progressive decrease in at-
tention entropy over time, whereas ReLLU kernel
attention and QK-LayerNorm maintain a more sta-
ble entropy, as shown in Figure 1 (top). As train-
ing progresses, this decrease in entropy for soft-
max attention is accompanied by an increase in
the Frobenius norm of the attention probability ma-
trix, which, in turn, increases gradient norms and,
ultimately, causes the loss to diverge. In contrast,
ReLU kernel attention and QK-LayerNorm main-
tain relatively higher attention entropy throughout
training while keeping the attention probability ma-
trix norms and gradient norms lower. Moreover,
softmax attention converges to a higher training
loss than these methods. We further conduct experi-
ments on GPT-2 pre-training, which exhibit similar
trends, as detailed in Appendix B.
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Figure 2: The comparison of training stability with dif-
ferent re-weighting functions is conducted by analyzing
the variation in final loss across different learning rates.
For each learning rate, the average final loss is computed
over five independent runs, comparing softmax-based
attention (solid lines; Softmax, Window Softmax) with
entropy-stable attention (dashed lines; QK-LayerNorm,
ReLU).

4.2 Simple and Small Transformer

To further clarify the relationship between the re-
weighting functions in attention and attention en-
tropy collapse, we conduct additional experiments
in a simplified setting. This collapse is commonly
attributed to factors such as model scale, hidden
state dimensionality, layer stacking (Sun et al.,
2024; He et al., 2024), and MLP layers (Cancedda,
2024). However, to disentangle the role of the re-
weighting function from these other influences,
we employ a small Transformer model composed
solely of self-attention layers, trained on a simple
regression task. Notably, we observe that attention
entropy collapse can emerge independently of the
other factors, highlighting the fundamental role of
the self-attention itself in driving this effect.

Experimental Results The results are even more
definitive than those observed in the LLMs exper-
iments, as discussed in Section 4.1. In Figure 1
(bottom), softmax-based attention (solid lines; Soft-
max, Window Softmax) rapidly collapses to the
attention entropy of zero early in training. At the
same step, the gradient norm explodes, causing
the loss to spike. In contrast, ReL.U kernel atten-
tion (blue dashed line) and QK-LayerNorm (green
dashed line) maintain higher attention entropy, re-
sulting in more stable training. Additional results
for other attention variants, including Sigmoid ker-

Re-Weighting Function | LR Sensitivity

Softmax (Vaswani et al., 2017) 2.30
Window Softmax (Beltagy et al., 2020) 2.20
oReparam (Zhai et al., 2023) 2.18
Sigmoid Kernel 1.97
ELU+1 Kernel (Katharopoulos et al., 2020) 1.95
QK-LayerNorm (Gilmer et al., 2023) 1.14
ReLU Kernel 1.03

Table 1: LR sensitivity for various re-weighting func-
tions. It measures the rate of change of final loss with
respect to the learning rate. Lower LR sensitivity indi-
cates more stable training.

nel, ELU+1 kernel attention and cReparam, are
provided in Appendix A.

4.3 Comparative Analysis of Stability

Across both large and small models, softmax-based
attention exhibits attention entropy collapse and
training instability, whereas ReL U kernel attention
and QK-LayerNorm remain stable. To compare
the training stability of these attention methods,
we use learning rate sensitivity (LR sensitivity),
which quantifies the deviation of the final loss from
the optimum across a wide range of learning rates
(Wortsman et al., 2024). LR sensitivity is defined
as B[, [min (£(A(n)), &) — £*], where [a, b]
is the learning rate range, ¢* is the loss achieved
with the optimal learning rate, £ is the loss at ini-
tialization, and = A(n) denotes the model param-
eters obtained after training with learning rate 7.
We sweep learning rates Ir € {1, 3, 5} x 10* with
k= —5,—4,...,1 and Ir < 10, training small-
scale models using SGD and reporting results for
each re-weighting function as the average over five
runs per learning rate.

Experimental Results Figure 2 shows how the
final training loss of different attention methods
changes over a broad range of learning rates, with
a summary in Table 1. ReLU kernel attention (blue
dashed lines) achieves the widest stable range
and the lowest sensitivity, maintaining low final
loss across nearly five orders of magnitude. QK-
LayerNorm (green dashed line) also demonstrates
strong robustness, with stability comparable to
ReLU kernel. In contrast, softmax-based methods
(solid lines; Softmax and Window Softmax) re-
main stable only in a narrow range but exhibit the
highest LR sensitivity. Among other attention meth-
ods, ocReparam remains relatively high, whereas
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islog N ~ 5.3.

ELU+4-1 and Sigmoid are lower (see Appendix A
for the corresponding curves).

S Why Attention Entropy Collapse
Emerges and Causes Training
Instability

Empirical results show that ReLU kernel attention
and QK-LayerNorm avoid attention entropy col-
lapse and enable more stable training than softmax-
based attention. This section provides both theoret-
ical insights and experimental analysis to explain
the reasons behind this behavior. Furthermore, it
demonstrates that the attention entropy collapse
increases the gradient norm, leading to training
instability.

5.1 Variance Sensitivity Induces Attention
Entropy Collapse

Based on the experiments, attention entropy col-
lapse in self-attention heavily depends on the func-
tion used to re-weight the query—key dot product.
The main cause is that re-weighting functions ei-
ther amplify or confine differences between inputs
as the input bound increases. Softmax-based atten-
tion tends to cause entropy collapse because the
exponential function excessively amplifies differ-
ences in input values as variance increases. As a
result, the softmax disproportionately emphasizes
larger inputs while suppressing smaller ones. Win-
dow attention applies softmax only within local
windows rather than across the entire sequence of

length N. This local-window restriction prevents
any single token from being repeatedly attended to
across the entire sequence, which helps limit exces-
sive focus on a single token. However, as demon-
strated in previous experiments, attention entropy
still tends to decrease or even collapse. Therefore,
using re-weighting functions that have low sensi-
tivity and are less affected by logits variance, such
as ReLU Kernel, or applying methods like QK-
LayerNorm that normalize the variance, can help
maintain higher attention entropy and enable stable
training.

Theorem 5.1 (Sensitivity of Softmax and ReLU
Entropy on Variance). Let z ~ N(0,02%Iy), p =
softmax(z) and H(p) = — N | p;log p;. Then,
for small o2,

H(p) =log N — (N — 1)6%/2N + O(c*)

and the derivative of H(p) with respect to o is

=-E, [ZZ 27 -pz} <0.

Thus, H (p) is strictly decreasing in 0.

By contrast, the entropy of the ReLU kernel at-
tention probability p is given by

o
Oo?

H(p) =logN — O (1/D>

and it does not depend on the variance o>.

The entropy of the softmax distribution de-
creases from the maximum value of log N as o2
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increases, highlighting softmax’s high sensitivity to
logits variance and its tendency toward entropy col-
lapse. Notably, the softmax logit scaling by 1/ VD
(used in LLaMA/GPT-2 and omitted in our small
model) does not control attention logits variance
and therefore neither reduces the variance sensitiv-
ity in Theorem 5.1 nor prevents attention entropy
collapse. In contrast, the entropy of the ReLU ker-
nel attention distribution remains approximately
log N up to a small correction O(1/D), and is no-
tably independent of logits variance. The detailed
proof is provided in Appendix E.

Variance Controllability with QK-LayerNorm
As shown in both Figure 1 and 2, QK-LayerNorm
maintains high attention entropy and exhibits stable
training. This illustrates how QK-LayerNorm effec-
tively controls the variance of the attention logits in
softmax-based attention. Moreover, when the LN
scaling parameter y is bounded, QK-LayerNorm
becomes robust to shifts in logits variance, thereby
ensuring stable attention behavior during training.
Let the inputs be scaled as Q; = 0,Q;, K; =
oK, with arbitrary scaling factors o4, 0 > 0.
Since scaling a vector scales both its norm and vari-
ance proportionally, the effect of these scale factors
cancels out after LayerNorm is applied, resulting
in the normalized attention logits defined in (2) that
are invariant to logits variance. Both the attention
probability of QK-LayerNorm PJ;N defined in (3)
and its entropy depend only on the normalized log-
its and therefore the attention entropy is invariant to
; s OH() _ OH(P) _
query and key variance, i.e., =52 = —5 5~ = 0.
q k
However, if the scaling parameters v, and -y, are
not bounded, attention entropy may collapse, as
detailed in Appendix D.

Controlled Experiment Theoretical analysis
demonstrates that the entropy of the softmax func-
tion decreases as variance increases, indicating
high sensitivity. Unlike softmax, ReLU kernel at-
tention entropy does not depend on the attention
logits variance. To provide empirical evidence for
the theoretical analysis, we analyze the sensitivity
of various re-weighting functions to the attention
logits variance (defined below).

Definition 5.2 (Attention Logits Variance). The
attention logits variance for each row Z; of the
attention logits Z € RV*¥ is defined as the empir-
ical variance Var({Z; 1, Zi 2, -+ , ZiN}).

To examine how softmax-based and entropy-
stable attention respond to attention logits variance,
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Figure 4: Relationship between attention logits variance
and normalized attention entropy defined in (8) during
training, across different attention methods. Softmax-
based methods (e; Softmax, Window Softmax) and
entropy-stable methods (¥; QK-LayerNorm, ReLU ker-
nel) are included for comparison.

we control this variance with the unit-norm query
and keys sampled from A/ (0, 021) ato =1,2,4,8,
so that the logit Z; ; = QinT ~ N(0,0?) has a
variance of o2. Figure 3 presents histograms of
the resulting attention weights for a single query
(i.e., P; for ();), illustrating how the distribution
changes as o increases. With softmax attention,
as variance increases, the attention distribution be-
comes increasingly extreme, concentrating proba-
bility mass on a few key vectors and resulting in
lower attention entropy. In contrast, ReLU kernel
attention maintains an attention entropy of around
5.0 slightly below log N regardless of the value
of the attention logits variance, preserving a more
evenly distributed attention probability and avoid-
ing entropy collapse. This trend is evident in Figure
3 (rightmost), confirming that softmax attention is
highly sensitive to attention logits variance, with
entropy changing steeply as variance increases. In
contrast, ReLLU kernel attention shows low sensitiv-
ity, exhibiting an almost flat rate of entropy change.

Practical Experiment Following controlled ex-
periments, we analyze the relationship between the
attention logits variance and entropy of softmax-
based and entropy-stable attention methods during
training. We define the normalized attention en-
tropy as:

2 H(FP;)

H(P) = 9(H(P) = 57— prpss ®)
where H.x denotes the maximum attention en-
tropy, which equals log N. Note that v is increas-
ingin H.
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Figure 4 illustrates the relationship between at-
tention logits variance and normalized attention
entropy (H (P;)) across different attention meth-
ods at each training step. Softmax-based atten-
tion exhibits a progressive decrease in entropy as
the attention logits variance increases. In contrast,
ReLU kernel attention maintains stable attention
entropy even as attention logits variance increases,
indicating low sensitivity to variance. Even at the
same variance level, softmax-based attention pro-
duces significantly lower entropy. Notably, QK-
LayerNorm shows a trend similar to that of Soft-
max, but it prevents a sharp drop in entropy by
controlling the magnitude of the attention logits
variance. On the other hand, Window Softmax ex-
hibits a relatively flatter trend compared to Softmax.
Since the variance sensitivity of softmax grows
with sequence length IV, using a smaller window
W slightly reduces the sensitivity to variance, but
is not sufficient to mitigate entropy collapse.

5.2 Attention Entropy Collapse Leads to
Training Instability

Attention entropy collapse is associated with un-
stable gradients, leading to loss spikes and train-
ing instability. In open-source LLMs pre-training
with softmax-based attention, we show that the
attention entropy progressively decreases, while
the gradient norm steadily increases (see Figure 1
top). In contrast, ReLU kernel attention and QK-
LayerNorm maintain higher entropy and stable gra-
dients, preventing training instability. As shown in
Figure 1 (bottom, the second panel), despite be-
ing trained with shallow layers composed only of
self-attention, the model still experiences gradient
explosion.

Entropy-Collapsed Attention Probabilities Ex-
plode Gradient The explosion of gradients,
along with attention entropy collapse, is closely
tied to the Lipschitz constant of self-attention.
Specifically, the softmax function is the primary
cause, because increases in the logits bound or
variance result in disproportionately large output
changes, leading to an unbounded rate of change
and a significantly elevated Lipschitz constant, con-
sistent with prior results that standard dot-product
self-attention is not globally Lipschitz. Previous
research shows that softmax attention lacks a fi-
nite global Lipschitz constant (Kim et al., 2021;
Khromov and Singh, 2024). To address this, prior
work replaces softmax with alternatives such as

L2 self-attention (Kim et al., 2021) and sigmoid
self-attention (Ramapuram et al., 2025), which aim
to enforce tighter Lipschitz upper bounds.
According to Dasoulas et al. (2021), the norm
of the derivative of the self-attention layers with
respect to the input X is upper bounded as follows:

IDAx||r <[P F

+ V2| Xl 2,00 IDZx | 7. (2,00) » )
where HXH(2,oo) = max;(>,; XZ-Z’].)l/2 and
[ flla,p = max g, =1 ||.f(z)][a- The attention prob-
ability matrix norm || P||  controls the upper bound
in (9) and depends on whether the attention entropy
of P is low (one-hot) or high (uniform).

Proposition 5.3. The norm ||P||r of the atten-
tion probability matrix P lies within the interval
[1,V N|, attaining the extreme values as follows:

1 if each row P; is uniform
I1Pllr= . . -
VN ifeach row P; is one-hot
(10)

On the contrary, the attention entropy H (P) lies
within [0,log(N)], attaining the extreme values:

H(P) {loguv)

0 if each row P; is one-hot -

(11)

Figure 1 (rightmost) illustrates how the attention
probability matrix norms evolve for softmax-based
and entropy-stable attention. At the beginning of
training, both models have not yet learned the rele-
vance between tokens in the input sequence. As a
result, each row of P is nearly uniform, with a high
attention entropy H (P) ~ log(N) from (11). This
uniformity results in stable training dynamics, as in-
dicated by a small Frobenius norm || P||p ~ 1 from
(10) in Proposition 5.3 and bounded gradients from
(9). As training progresses with softmax-based at-
tention, attention probabilities increasingly concen-
trate on a single token, forming nearly one-hot rows
with near-zero attention entropy as described in
(11). Consequently, || P|| increases toward v/N,
following (10), leading to larger gradients and in-
creased training instability as indicated in (9). In
contrast, entropy-stable attention maintains a sig-
nificantly lower norm. Furthermore, the positive
correlation between the gradient norm and || P|| r,
as indicated by the bound in (9) is empirically vali-
dated in Appendix F.

if each row P; is uniform
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6 Conclusion

In this paper, we identify high variance sensitivity
and lack of control in softmax attention as key fac-
tors behind attention entropy collapse, as observed
even in a model composed solely of self-attention
layers. We also provide theoretical and empiri-
cal evidence that entropy-stable attention methods,
which are either insensitive to or explicitly control
attention logits variance, can maintain attention en-
tropy and enable stable training. Furthermore, we
link attention entropy collapse to training instabil-
ity by showing that increased attention matrix norm
leads to gradient exploding.

Limitations

Our analysis does not comprehensively cover a
wide range of model architectures or self-attention
variants, which limits the generality of our findings.
Moreover, limited computational resources prevent
evaluation of larger-scale models comparable to
those used in practice. It remains important to in-
vestigate how full attention in encoders and causal
attention in decoders differ in their sensitivity to, or
ability to control, the attention logits variance in the
re-weighting process. Furthermore, additional anal-
ysis is needed on training-related factors such as
learning rate schedules, warm-up strategies, weight
decay, and gradient clipping, which may also influ-
ence training stability.
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A Additional Experiments on Attention

Variants
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Figure 5: Average final training loss over five inde-
pendent runs for ELU+1 kernel, Sigmoid kernel, and
oReparam method across a range of learning rates.

We additionally experiment with kernelized self-
attention with ¢ set to ELU4-1 or Sigmoid, as well
as oReparam (Zhai et al., 2023), a reparameter-
ization method that normalizes weight matrices
by their spectral norm. In this simple and small
Transformer setup, which consists solely of self-
attention layers, cReparam is applied only to the @),
K, and V projection weights. As shown in Figure 6,
ELU+1 and Sigmoid kernel attention maintain sta-
ble training with high attention entropy, whereas
oReparam undergoes entropy collapse, leading to
unstable training. Although oReparam constrains
the operator norms and limits the scale of the atten-
tion logits, it does not reduce the variance—entropy
sensitivity of softmax and thus cannot fully pre-
vent attention entropy collapse. Figure 5 further
shows that cReparam has LR sensitivity compa-
rable to softmax attention, which results from its
dependence on softmax.

B Analysis on GPT-2 Pretraining

To validate our findings on larger models, we
further extend our experiments to GPT-2 Large
(774M parameters) with training on WikiText-103
(Merity et al., 2017), beyond the previously re-
ported LLaMA-1B results. Figure 7 illustrates that,
in softmax attention, attention entropy gradually
decreases in the early training steps, eventually
approaching zero (the third panel). Concurrently,
| P||r increases (the fourth panel), and the gradi-
ent magnitude sharply increases (the second panel),

reinforcing the direct relationship between entropy
and training stability observed in previous exper-
iments. In contrast, entropy-stable attention miti-
gates instability, thereby preserving higher entropy,
maintaining smaller || P||r, and stabilizing gradi-
ents.

C Experimental Setups

We specify the hyper-parameters for the large-scale
pretraining setup and the small and simple Trans-
former setup for simple regression.

C.1 LLM-Pretraining Experimental Setup

We pre-train a 1B-parameter LLaMA model on
a subset of the Pile dataset (= 5B) (Gao et al.,
2020), with rotary positional embeddings (RoPE)
(Su et al., 2024), a pre-norm structure with RM-
SNorm (Zhang and Sennrich, 2019), a SwiGLU
activation (Shazeer, 2020) in MLP. The model is
trained with a sequence length of 768 and a batch
size of 256. We use AdamW (Loshchilov and Hut-
ter, 2019) with a learning rate of 1e—3, following
a cosine scheduling strategy. We train for 10,000
steps (=~ 2B tokens in total) with a weight decay of
0.1 and gradient clipping set to 1.

C.2 Simple and Small Transformer
Experimental Setup

For the small-scale regression setup, a simple
Transformer architecture composed solely of self-
attention layers is employed. The model has 5 lay-
ers with a 3-dimensional hidden state (L = 5, D =
3) and a sequence length of 20 (N = 20). The at-
tention window size is set to 8, yielding the most
stable training dynamics and fixed across all ex-
periments. This setup is motivated by findings that
Transformers can adapt to new tasks from only a
few examples without parameter updates—a phe-
nomenon known as in-context learning (Brown
et al., 2020), which has spurred further research
(e.g., Garg et al. 2022; Zhang et al. 2024; Ma-
hankali et al. 2024; Von Oswald et al. 2023; Ahn
et al. 2024). The simple Transformer is trained
on an in-context linear regression task, predict-
ing w'x,11 from {(z;,9;)}", and a query vec-
tor =,,11, where (z;,w) are sampled i.i.d. from
N(0,Ip)and y; = w " z;. Furthermore, we evalu-
ate a broader set of re-weighting functions, includ-
ing Sigmoid kernel, ELU+1 kernel attention and
oReparam.
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Figure 7: Training behaviors of GPT-2 (N = 200) with softmax-based attention (solid line; Softmax) and entropy-
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Frobenius norm of the attention probability matrix (|| P| ). In the third panel, as the attention probabilities of
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attention || P|| - reaches its maximum value (dashed-dotted line; v/IN), the entropy-stable attention remains close to
its minimum (dotted line) under a uniform attention distribution.

D Ablation Study on QK-LayerNorm minor variations. These empirical results indicate
that QK-LayerNorm can control attention logits
variance, thereby improving stability, although this
benefit depends critically on the behavior of the

scale parameters 7, and .

Figure 9 presents an ablation study that empirically
analyzes the role of the scale parameters 7, and
v in controlling logit variance and preventing at-
tention entropy collapse, comparing four strategies:

Gradient Clipping, No Clipping, Fixed v = 1, and E  Proof of Theorem 5.1

Weight Clipping. Gradient clipping (top row) does
not fully control the norms, leading to significant
variation across layers. In layers where ||,|| - |||l
becomes large, we observe increased attention log-
its variance and decreased attention entropy. With-
out any clipping (second row), the scale parameters
grow rapidly and without bound in some layers,
resulting in an increase in attention logits variance
and diminished attention entropy. Fixing v, and
g to 1 (third row) enforces a constant attention
scale during training, effectively controlling atten-
tion logits variance and resulting in higher atten-
tion entropy. Weight clipping (bottom row) also
constrains the growth of the scale parameters and
helps regulate attention behavior, though it exhibits

E.1 Entropy Approximation for Softmax
Version 1

Let z = (21, 22, ..., 2N) € RY be a random vector
such that z; ~ N(0, 02) independently. Define the
softmax vector p = softmax(z), where

exp(z;)

P = =N (12)
Z;V:1 €Xp zj

The entropy of the softmax distribution is given
by

N
H(p) == pilogp;. (13)
=1
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We aim to derive first-order approximation for ~ uniform vector:
H (p) in the regime where 02 < 1. 1

pi = + Gi(2), (14)

When o2 is small, the random vector z is con-
centrated near zero, and hence the softmax output ~ where  the  perturbation  (;(z) satisfies
is close to uniform distribution. We can express Zf\;l Gi(2) =0, and (;(2) = O(0o).
the softmax probabilities as a perturbation of the Substituting this expansion into the entropy for-
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mula yields:

N

H(p)=—-) <Jif +Cz'> log <]17 +Cz’> - (15)

=1

We perform a Taylor expansion of the logarithm
around %:

N N

2
log <1 + C¢> = log <1> + NG — N7Cz‘ +0(¢)

(16)

Therefore, the entropy becomes:

Using the fact that }_,¢; = 0, Y., + = 1, and
neglecting higher-order terms, we simplify the ex-
pression:

N N2 1 X
H(p) legN—NZQ?*'?'NZQQ
i=1 i=1

N
N 9
1=

We now compute the expectation of the pertur-
bation energy:

E, =E, = Var(p),

)

i=1

N
>.¢
i=1

which can be approximated by known results for
the softmax of a Gaussian:

l 1\ ~N-1,
2 \r-5) |

=1

E,

Substituting this into the entropy expression

yields:
E. [H(softmax(z))] ~ log N — 5 TN O
N -1
=logN — ——0o2.
og T

E.2 Entropy Approximation for Softmax
Version 2

Let z = (21, 22, ..., zv) € RY be a random vector
such that z; ~ N(0, o) independently. Define the
softmax vector p = softmax(z), where

ezi eziff

- N_ ezk - N_ ezk—z
k=1 k=1

pi , (17)

where Z = £ SV | 2 is the empirical mean. We
assume the deviations z; — Z are small and expand
the exponentials using a Taylor expansion up to
third order:

~ 1
e =140z —2)+ 502(% — z)?

1
+ —03 (2 — 2)3 + O(oh).

5 (18)

Then the denominator becomes:

N N
Z e = Z(l +o(zp—2)+ %02(% —z)?
k=1 k=1
+ 303z — 2)°) + O(o)
(19)

By the definition of the mean, > ;_,(z; — z) = 0.
If the data are symmetric with respect to the mean,
then >"}_;(zx — 2)® = 0. Substituting these into
(19), we obtain:

N Lo
-z 2 =\2 4
Zez’“ Z—N+§a Z(zk—z) + O(c%)
k=1 =1
_ N(l + 1028+ 0(04)). (20)
where Sy = & S0 (2 — 2)2. To approximate

the softmax, we apply a Taylor expansion to the
denominator. This yields:

11 1, .

8374



Expanding the numerator similarly:

1
—2)+ =0%(z — 2)?

T =140(z 5 (22)
+ %03(zi -2+ 0(c) (23)

so the softmax becomes:

1 1
pi= 5 <1 — 20232> (14+o0(z —2)

1
+§O'2(ZZ‘

:%<1+0’(2Z‘—5)

z)2 —i—éo (2 2)3> + O(c?)

The negative log-probability is given by:
—o(z— Z —HogZez’“ z

k
=—0(z —z)+log <1 + %0252 + (’)(0—4)>
(26)
i —Z) + %0252 + O(o%).
27

—logp; = (25)

=logN —o(z

Thus the entropy term is:

—p;logp; = %[logl\f + (logN —1)0o (2 — 2)
(28)
%(zz —2)2 — %Sg—i— %SglogN)
+03 (3 (5 —2)° -1 8o (2 —
(29)

Summing over ¢ and using ) (2 — Z) = 0 and

>i(2i — 2)2 = N S, then gives

Z—pi logp; =log N — 3% Sy + O(c?).
Summing over i, using ) (% — Z) = 0, and
>i(zi — 2)2 = NSs, we get:

> —pilogp; =log N (30)

o2 (%82 log N — S + %32)

(31)
O' 28, +O(o )

(32)

=log N —

z)) + 0(04)] .

Taking expectation over z, we obtain:

— pilog pi]
%

=log N —

(33)

%UQEZ [So] + O(c?).
(34)

If we assume the z; are i.i.d. with unit variance,
then:

N-—-1

E,[S] = N (35
and finally:

E.[- Y pilogpi] (36)

o2

N —

(37
=log N T + O(c%).
(38)

E.3 Entropy of Softmax as a Strictly
Decreasing Function of Variance

Let H (o) denote the expected entropy of the soft-
max distribution:

sz log pi(= ]

We reparameterize z = Vo2e, where ¢ ~
N(0, In), and express the softmax distribution as
pile,0?) = exp(Vo?e;)
(2 ) - N *
S exp(Vo?e;)

Under this reparameterization, the entropy be-
comes

H(c?) =E. llog <Z e‘/‘?%f)

J
—Vo? Zaipi(s, 02)] .
i
Differentiating under the expectation yields

aiH _ L Z] Ej e\/O'izsj
60’2 € 2\/0'72 Zkz 6\/0'728"3

- 2\/1; Zé‘z‘pz’(& 02)
i

- Vo? 26?232‘(570'2)
%

2
+Vo? (Z e; pi(e, 02)> ] .
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The first two terms cancel, and substituting back

2z = Vo?e gives

n n 2
St (S
i=1 i=1
- 212E [Var (2)[7 ]]

Because the inner variance is strictly positive al-
most surely,

OH
902 <0 forallo? > 0.
E.4 Entropy Approximation of ReLU kernel
Attention

We consider query and key vectors defined as
Qi =0 gi, Kj =ohj,

where g;, h “nfi N(0,1;) and o > 0. We apply
the ReLU actlvatlon function ¢(z) = max(0, x)),
which is positively homogeneous of degree one,
ie., p(A\x) = A¢p(x) for any A > 0. Using this
property, we obtain

P(Qi) =0 d(gi),  d(K;) =0 o(hy).

Then we define the unnormalized attention logits
as

tij == d(g:) d(hy)", sij = (Qi) G(K

Here, t;; corresponds to the inner product between
the vectors g; and h;, while s;; is the scaled ver-
sion of ¢;; by a factor of 2. We then convert these
logits into probabilities by applying row-wise nor-
malization:

2
_ _ Sij _ 0°ti;
Dij (U) = = o2 ch\f_l tor

chvzl Sik

Note that the factor o cancels out, the resulting at-
tention probabilities are invariant to o. Accordingly,
the row-wise entropy is defined as

N
= pij(o)
j=1

= H;(1) forall o > 0.

= Pij(1).

IOg ﬁi,j (U) )

which implies that H;(o)

For each coordinate £ = 1,...,dlet G = g(k)
H= h;k), and define
XY = o(9™) o(nl).

)=t

Each such term contributes to the dot product ¢; ;,
and its expectation and variance are given by

p=E[XpYi] = —

w2 —1

2 _
T = Var(XkYk) = T']I'Q

By independence and linearity, the mean and vari-
ance of ¢; ; are

D
Eltij) = Y E[XyYi] = Dy,
k=1
D
Var(ti;) = Y _ Var(X,Y;) = D>,
k=1

Moreover, since each XY}, has finite variance, cen-
tral limit theorem applies, giving as d — oo

D
tij = XYk
k=1

:Du—}—\/ﬁT{ij, fz‘j 2>./\/(0,1).

Fixing 4, define

1Y —f N
,z NZ K i - 7? Zézj =0.

j=1

Since t; = Du + O,(v/D),
O,(D~1/?). Hence,

we have 0;; =

pij(1) = = (1 +dy),

N(

and a second-order Taylor expansion around the
uniform distribution gives

me log pi; (1)

=logN — —252 +O(15:113)-

Finally, since

2
E[6y] = ﬁ +o(D7Y), E[§i3=o(D7"),
it follows that
E[H;(1)] =log N — O(D™).
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F Correlation Between Attention Entropy
and Attention Probabilities Norm

Alpha = 0.1 Alpha = 0.001

— —
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Figure 10: Correlation between the attention entropy
and /o-norm of each row after sampling rows of at-
tention probabilities from a Dirichlet distribution. For
this setup, the concentration hyper-parameter « of the
Dirichlet distribution is configured as 0.1 and 0.001 dur-
ing sampling.

To show that as attention entropy decreases, the
norm of attention probability matrix increases, we
sample attention probability vectors from a Dirich-
let distribution, defined as follows:

P; ~ Dirichlet(a1) 39)

The concentration of the distribution can be con-
trolled using the hyper-parameter a1l. When a1 is
small, the distribution is concentrated on a single
value, which resembles attention entropy collapse.
In contrast, when a1 is relatively large, the distribu-
tion becomes more uniform. Experimental results
indicate that when a1 = 0.001, attention entropy
is significantly lower than at o1 = 0.1. Further-
more, it is observed that the attention entropy of
P; and its {5-norm are inversely related. As atten-
tion entropy decreases, || P||r increases, reaching
its maximum when attention entropy approaches
zZero.
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G Attention heatmaps

Attn. Prob. at 100 Steps Attn. Prob. at 500 Steps Attn. Prob. at 1000 Steps  Attn. Prob. at 1300 Steps
©  [RERNREEIE R L © RN AR R ©  LEERR R Iy o74“‘\“‘\“.‘\“‘\“‘\.‘\“7‘7
o | . s i i ol .
g § g | | ] = 0.8
y © - = © - = © - B J © - I =
gcm— = o - = m— | = (= I ! 0.6
Sa: - . Coac a3, o TRy
= : =3t S : = Y
0 - E 0 - E 0 - ! 0 - I 5 0.2
v—(: g — - i E — - I . :
R AN AU IR IS IR ATURTS BURPR BPRI TN IFIRENT IR IR IR TR IR Sl b b b PER e e e B R R e I EEEE R 70»0
0 3 6 9 121518 0 3 6 9 121518 0 3 6 9 121518 036 9121518
o 4 2 o 4 o o 4 : o - m 1.0
o E 3 g ©: §  : - Ros
& © - = © - = © - = © - =
é} @; = > - - c;; E o = -0()
39 i & i F o: 2204
[} b 3 3 N N
EEE - T st -E : i
0 - =4 0 - E 0 - E 0 - E g 0-2
v—(7 3 v—(7 4 v—17 4 v—17 4 :
Sl boaa b b banabaae RN AU IR IS IURTE EUURTE RURPRE RPRI RN AUITRI IS IURTE EUURTE RURPRE RPRI I I NI IR IR RTITR AP 70»0
0 3 6 9 121518 0 3 6 9 121518 0 3 6 9 121518 03 6 9121518
Sequence Sequence Sequence Sequence

Figure 11: Heatmaps of attention probabilities for softmax-based attention (top) and entropy-stable attention
(bottom) during training. In softmax-based attention, each row progressively converges to a one-hot-like vector,
leading to attention entropy collapse. The attention matrices are from the first layer.
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