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Abstract

As Large Language Models (LLMs) are in-
creasingly applied to complex reasoning tasks,
achieving both accurate task performance and
faithful explanations becomes crucial. How-
ever, LLMs often generate unfaithful explana-
tions, partly because they do not consistently
adhere closely to the provided context. Ex-
isting approaches to this problem either rely
on superficial calibration methods, such as de-
composed Chain-of-Thought prompting, or re-
quire costly retraining to improve model faith-
fulness. In this work, we propose a proba-
bilistic inference paradigm that leverages task-
specific and lookahead rewards to ensure that
LLM-generated rationales are more faithful to
model decisions and align better with input con-
text. These rewards are derived from a domain-
specific proposal distribution, allowing for opti-
mized sequential Monte Carlo approximations.
Our evaluations across three different reasoning
tasks show that this method, which allows for
controllable generation during inference, im-
proves both accuracy and faithfulness of LLMs.
This method offers a promising path towards
making LLMs more reliable for reasoning tasks
without sacrificing performance.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable success across a wide range of challeng-
ing tasks, including Question Answering (QA) (Li
et al., 2024b), reasoning (Yao et al., 2023; Yan
et al., 2024), and providing feedback on essays
or reviews (Liang et al., 2024; Li et al., 2023).
While LLMs can be prompted to generate self-
explanations for their decision (Kim et al., 2024;
Madsen et al., 2024; Atanasova et al., 2023), ensur-
ing the accuracy and fidelity of these rationales re-
mains challenging. This is critical both for improv-
ing interpretability and for enhancing reliability in

*Both authors contributed equally and may be interchanged
as appropriate.

Student Answer: Endocytosis is when the cell's membrane wraps
around a substance outside of the cell, and part of the membrane
disolves, letting the substance inside the cell. Exocytosis is when a
substance inside a cell gets wrapped inside the cell's membrane. Part of
the membrane disolves, letting the substance out of the cell.
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two specific cell processes

'endocytosis and exocytosis' ...

1 point; Denotes some understanding
but lacks clarity and details about cell

membrane control processes ...
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and endocytosis, ...

1 point; The answer correctly described
membrane-assisted transport,

specifically exocytosis, ...

Figure 1: Comparison of rationale faithfulness between
a LLaMA-3 model (Backbone) and the Expert (same
LlaMA model trained on a dataset in biology exams).
The Expert model is sensitive to the removal of a valid
key element from the answer. In contrast, the Backbone
model fails to reflect the occurrence of the important
word ‘exocytosis’. Based on the perturbation-based eval-
uation, Expert model shows better faithfulness scores
than Backbone across four datasets.

safety-critical fields (Lyu et al., 2024; Radhakrish-
nan et al., 2023).

Enhancing the faithfulness of LLM-generated
rationales is a multifaceted challenge. To date,
there is no universally accepted or formal defi-
nition of faithfulness (Lyu et al., 2024). In this
paper, we focus on a specific category of unfaith-
fulness, where models fail to incorporate key con-
textual information into their generated rationales.
This issue is highlighted in faithfulness evaluation,
where unfaithful models do not respond adequately
to alterations in input (Lanham et al., 2023; Rad-
hakrishnan et al., 2023). Figure 1 exemplifies this.
When assessing a student’s answer to a biology
exam, an untrained LLaMA-3 Backbone model
overlooks critical details and produces vague, un-
faithful assessments if key information is removed.
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Such base models often favor generic terms, lead-
ing to contextually poor rationales. Conversely, a
domain-trained Expert model accurately identifies
key scientific concepts in the student’s answer and
appropriately adjusts its evaluation upon removal
of critical information.

The model’s tendency to rely heavily on its pre-
trained distributions often stems from its lack of
contextual sensitivity, causing it to overlook sub-
tle differences across various domains and con-
texts (Hu et al., 2023). Even instruction-tuned
LLMs, designed to enhance adaptability, struggle
to adjust to new domains and generate contextu-
ally sensitive responses. For instance, 92.2% of
tokens overlapped between the base and instruction-
aligned LLMs across 1,000 examples (Lin et al.,
2024). Moreover, evidence (Yuan et al., 2023; Yang
et al., 2024) suggests that LLMs often generate in-
accurate labels when applied to out-of-distribution
scenarios. Such domain insensitivity compromises
their effectiveness, especially when balancing the
dual demands of accurate label prediction and faith-
ful rationale generation, which remains a chal-
lenge (Radhakrishnan et al., 2023).

To address these limitations, we propose Drift,
a Dual-Reward probabilistic Inference method for
FaIthful raTionale generation. It incorporates a
task reward to distill knowledge from a supervised
fine-tuned classifier for more accurate label predic-
tion. Recognizing that expert models trained on
domain-specific corpora respond more effectively
to domain-specific contexts, we utilize a generative
expert model to provide a rationale reward dur-
ing rationale generation. Specifically, the rationale
reward encourages the generation of tokens that
enhance the plausibility of future tokens, guided
by the output distribution of the generative expert
model. Notably, the generative expert models are
not required to be trained on the exact inference
dataset or share the same backbone model as the
inference model, which ensures flexibility and gen-
eralisability. Our contribution is three-fold1:
1. We investigate the challenge of faithful ratio-

nale generation by highlighting the limitations
of LLMs in responding to domain-specific con-
text. To the best of our knowledge, this is the
first study to enhance faithfulness by explicitly
encouraging domain-relevant generation.

2. We propose a novel and efficient probabilistic
inference framework that integrates both task
and rationale rewards within a sequential Monte

1Code is available at https://github.com/lijiazheng99/drift.

Carlo tree search process.
3. Empirical evaluations across three tasks and

seven datasets show significant improvements
in both accuracy and faithfulness. Ablation stud-
ies further highlight the synergistic benefits of
Drift in leveraging the strengths of different
expert models.

2 Related Work

Constrained generation Constrained genera-
tion can be achieved by training models with
an attribute-conditioned discriminator (Yang and
Klein, 2021), but more recent studies (Liu et al.,
2024a,b,c) have shifted focus to constrained decod-
ing to reduce the training cost for large language
models. Some constraints are localized, applied
step-by-step through simple logit arithmetic be-
tween two models to ensure certain attributes, such
as harmlessness (Xu et al., 2024), toxicity avoid-
ance, and truthfulness (Liu et al., 2024a). However,
these localized constraints are limited in enforcing
attributes that span across a larger text segment.
Monte Carlo tree search (MCTS), by contrast, is
characterized by its lookahead reward, enabling
it to estimate future rewards. This makes it pop-
ular for identifying optimal trajectories in decod-
ing (Liu et al., 2024b; Yan et al., 2024) or as train-
ing data (Snell et al., 2023; Hong et al., 2023). Our
method is closely related to Fame (Hong et al.,
2023), which employs a faithfulness-seeking re-
ward in the Monte Carlo Search framework. Unlike
Fame, our approach avoids training and incorpo-
rate the domain-specific rewards into a probabilistic
monte carlo inference.

Rationale faithfulness Although LLMs can pro-
vide plausibly sounding explanations for their an-
swers, recent work argues that model generated
natural language explanations are often unfaith-
ful (Lanham et al., 2023; Atanasova et al., 2023).
Faithfulness evaluation for rationale is to apply im-
portant perturbation to the original rationale and
check the changes in the new output (Parcalabescu
and Frank, 2023). Such perturbation includes coun-
terfactual edit (Atanasova et al., 2023), biased fea-
ture (Turpin et al., 2023) and corrupted Chain-
of-Thought (Lanham et al., 2023). To increase
the faithfulness of LLM-generated response, many
existing methods focus on the Chain-of-Thought
and decompose the reasoning process into multiple
sub-sentences (Radhakrishnan et al., 2023), then
verify them using external tool, e.g., python inter-
preter (Lyu et al., 2023), counterfactual (Gat et al.,
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Figure 2: Our method incorporates both task rewards
and look-ahead rationale rewards to ensure accurate
label prediction and faithful rationale generation at each
step. The original token generated by the backbone
model, denoted as xi, is refined by either the task or
rationale reward model, resulting in an updated token
x′
i. The refined token sequence [x′

0 : x′
i] serves as

the conditional context for generating the next token
xi+1. The rationale reward also assigns a score αi to
each token, which is used to select the final generation
trajectory from a beam size of K.

2023). The above methods alleviate the unfaithful
issue either in a post-hoc manner or via costly train-
ing. We instead propose a inference-time method,
which can improve both faithful and accurate for
different reasoning tasks, also maintain a similar
computation cost as beam search.

3 Probabilistic Inference for Faithful
Rationale Generation

In this section, we introduce our probabilistic infer-
ence framework, Drift, depicted in Figure 2 and
detailed in Algorithm 1. The framework incorpo-
rates two types of rewards: a task reward for more
accurate label prediction and a rationale reward for
faithful rational generation.

3.1 Problem Setup
We represent the constrained decoding process
of model f as a Markov Decision Process,
⟨S,V, π,Q⟩. The state space S consists of multi-
token sequences drawn from the vocabulary V . The
transition function πt(xt+1 | xt) ∈ ∆|V| outputs a
probability distribution over V . The reward func-
tion Q guides the search process to ensure accuracy
and faithfulness.

A probabilistic inference framework based
on Feynman-Kac model Feynman-Kac formu-
lae (Del Moral and Del Moral, 2004) is designed
to facilitate probabilistic sequential Monte Carlo
approximation (Lew et al., 2023), which involves
a tuple consisting of an initial state, a transition
distribution, and a potential function, denoted as
(s0, πt, Gt). The potential function Gt maps pairs

of states (st, st+1) to a non-negative score, i.e.,
Gt : (st, st+1) → R≥0. It is originally designed to
compute a probabilistic density of sampled states
st, thereby approximating a target Gt using the
equation:

Pt(st) =
Eπ

[∏t∧T
i=1 Gi(Si−1, Si, f) · 1[St=st]

]

Eπ

[∏t∧T
i=1 Gi(Si−1, Si, f)

] ,

where 1[St=st] is an indicator function that equals
1 if the state at time t is st, and 0 otherwise. The
numerator inside the expectation represents the
product of rewards and the probability of reaching
state st, ensuring that paths leading to high values
of Gt over time receive more weights. Generation
continues until a terminal token is reached or the
sequence length reaches its maximum T , i.e., t ∧
T = min(t, T ).

Advantages of the probabilistic inference frame-
work The probabilistic inference framework can
be adapted to various tasks by designing differ-
ent potential functions Gt, such as prompt inter-
section (Lew et al., 2023) and hypothesis revi-
sion (Piriyakulkij et al., 2024). In essence, Gt

functions can be instantiated as the reward function
Qt in MCTS-like algorithms for guided search, but
it offers two key advantages for our approach:

(i) Unlike MCTS, which requires expensive roll-
outs or simulations to evaluate potential ac-
tions (Xie et al., 2024; Zhang et al., 2024a; ope-
nai, 2024), the Feynman-Kac model focuses on
high-probability paths. This reduces unneces-
sary computations and enables more efficient
exploration.

(ii) While MCTS requires manually tuned coeffi-
cients to balance exploration and exploitation,
the Feynman-Kac model inherently integrates
uncertainty into the search process, allowing for
more adaptive and dynamic decision-making.

3.2 Drift Framework

We describe how to incorporate task and rationale
rewards into the probabilistic framework. In our
setup, the generated sequence for reasoning tasks
consists of an answer followed by an explanation 2.
The Drift framework, illustrated in Figure 2, in-
corporates two types of rewards. The task reward
comes from a smaller fine-tuned classifier for label

2To prevent scenarios where an overly long rationale
causes the answer to exceed the output length limit, we priori-
tize generating the answer first.
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Algorithm 1 Dual-Reward Probabilistic Inference
Input: Backbone model f , fine-tuned classifier prediction c0, rationale expert model Qg; state transition distribution πt, beam

size K, max length T , label set C, vocabulary V , terminal token |eos|
Output: Selected token sequence xk∗

1:T

Initialization: initialize weighted input sequence {(xt, αt)← (s0, 1)}Tt=1.
t← 0
while t < T and xt ̸= |eos| do

if t == 0 then ▷ First position for label generation
xk
t+1 ← TaskReward(πt, xt, f, C, c0), k ∈ [1,K] ▷ Derived refined label from TaskReward

else ▷ Other positions for rationale generation
xk
t+1 ∼ πt(·|xk

t , f), k ∈ [1,K] ▷ Backbone model uses Beam search decoding
end if
αk
t+1 ← RationaleReward(πt, x

k
1:t+1, f,Q

g), k ∈ [1,K] ▷ Generated rationales are reweighted by expert model
t← t+ 1

end while
k∗ ← argmaxk

(∑t
i=1 α

k
i /t

)
▷ Select sequence with maximal average weight

return xk∗
1:t

Function TaskReward(πt, xt, f, C, c0)
V ′ ← V \ (C \ {c0}) ▷ Update vocabulary: remove labels in C except c0
Let P (v′|xt) = πt(xt+1 = v′ | xt, f).
Define π′

t(xt+1 = v′ | xt)← P (v′|xt)∑
v′′∈V′ P (v′′|xt)

for v′ ∈ V ′; else 0. ▷ Filter & renormalize πt over V ′

v ∼ π′
t(·|xt) ▷ Sample next token from the constrained distribution

return v

Function RationaleReward(πt, x1:t+1, f,Q
g)

αt+1 ← Qg(x1:t+1) ▷ Score candidate sequence x1:t+1 using Qg

return αt+1

prediction at the first generation step. The ratio-
nale reward, provided by a domain-specific genera-
tive expert model, is applied to adjust the stepwise
generation by generating a new token x′i associ-
ated with higher Qt and a corresponding weight wi.
The final trajectory is selected based on the aver-
age sequence-level weight. Details can be found in
Algorithm 1: Dual-Reward Probabilistic Inference,
with functions TaskReward and RationaleReward.

During model inference, the framework incorpo-
rates two reward signals. The task reward, active
at the first generation step (for label prediction),
constrains the sampling distribution to align with
the classifier’s output c0. The rationale reward, ap-
plied at each step, is calculated by a generative
expert model g as a weight αt for the current token
xt based on its fit with the preceding context and
alignment with anticipated expert predictions.

Task reward A heuristic and lightweight ap-
proach for constrained generation from LLMs is to
use masking or logit bias to reweigh the probabili-
ties of sampled tokens, i.e., πt. Many methods (Liu
et al., 2024a; Zhao et al., 2024) leverage gener-
ation logits from smaller models to calibrate the
logits from larger model, e.g., logit fusion, in order
to alleviate undesirable attributes such as toxicity
and untruthfulness. However, these attributes are
implicitly conveyed over longer spans rather than

individual tokens, making token-level constraints
insufficient (See the performance of logit fusion
in Table 4). Therefore, we don’t adopt such local
constraint for faithfulness enhancement. Instead,
fine-tuned classifier trained on knowledge-specific
corpus generally demonstrate better accuracy than
general LLM (Yuan et al., 2023; Yang et al., 2024).
Therefore, we adopt a pretrained classifier to en-
hance task-specific label prediction. Specifically,
for the generation step corresponding to the task
label, we define a set of classification label words
C. We then modify the vocabulary to V ′ by remov-
ing all label words from C except for the expert
classifier’s prediction c0. The output probabilities
from the base model f (denoted πt) are then renor-
malized over this updated vocabulary set V ′, effec-
tively ensuring the sampled label is a valid token,
or another non-label token. (Details in the function
TaskReward). This step directly steers the answer
generation towards the expert classifier’s choice.

Rationale reward As discussed earlier, the task
reward is designed for label accuracy, regardless
of the quality of generated rationales; therefore,
we require the use of rationale rewards. Similar
to the rollout phase in MCTS, we generate multi-
ple promising trajectories and select the optimal
one based on the overall rewards. At each step,
the exploited reward is determined by the hind-
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sight function Qg
t , defined by the generative expert

model. Specifically, the expert model evaluates the
generated n-gram (xt, xt+1) from f (Details in the
RationaleReward function). This approach encour-
ages text spans that are faithful and coherent with
the context, as they align more closely with the
expert’s domain-specific distribution. The impact
of the rationale reward on enhancing faithfulness
is summarized in Table 1.

4 Experiments

We evaluate Drift for both the task performance
and faithfulness of the generated rationale across
three reasoning problems, i.e., student answer as-
sessment, natural language inference and question
answer. We further ablate the task reward and ra-
tionale reward to verify their effectiveness.

4.1 Experimental Setup

We present the evaluated dataset, the expert models
incorporated, and the experiment setup for faithful
evaluation.

4.1.1 Datasets
We conduct experiments on three tasks: student
answer assessment on the ASAP dataset 3, natural
Language Inference (NLI), including the Stanford
Natural Language Inference (SNLI) (Bowman et al.,
2015) and the Multi-Genre Natural Language Infer-
ence (MNLI) (Williams et al., 2018) datasets; and
the TruthfulQA dataset (Lin et al., 2022). In each
of these tasks, LLMs are required to generate both
class labels and rationales justifying their classifi-
cation decisions. For student answer assessment,
the labels represent valid score ranges, 0-3; For
NLI, the labels are ‘entailment’, ‘contradiction’,
or ‘neutral’. For TruthfulQA, we use a subset of
the dataset converted into a multiple-choice format.
Our experiments are evaluated on 100 randomly
sampled instances from each dataset’s test set, with
the model utilizing 8-bit quantization. We use the
accuracy score to evaluate the task performance.

4.1.2 Backbone and Expert Models
Our study employs two widely used instruction-
tuned LLMs as our backbone models: Llama-
3-8B-Instruct (Dubey et al., 2024) and Mistral-
7B-Instruct-v0.3 (Jiang et al., 2023). For each
dataset, we incorporate a classifier to provide the
Task reward and a generative model as the expert
model to offer the rationale reward. Details of

3https://kaggle.com/competitions/asap-sas

our Backbone, task reward and rationale reward
model choices are given in Table A2 in the Ap-
pendix. The parameter and inference setup details
are elaborated in Appendix A.1. Note that all expert
models are fine-tuned solely on the train sets of the
evaluation datasets or on other unrelated datasets
distinct from the evaluation test sets, demonstrat-
ing the generalizability of our framework. Our
framework, Drift, operates under a zero-shot set-
ting with open-source reward models without any
fine-tuning.

4.1.3 Faithfulness Evaluation Setup
Perturbation for counterfactual generation
Following existing approaches for counterfactual
generation in faithfulness evaluation (Atanasova
et al., 2023; Lanham et al., 2023), we modify key
parts w of the inputs I and examine the resulting
changes in the generated rationales. For student
answer assessment, we remove the clause (sub-
sentence) from the student answer that is most se-
mantically related to the original rationale Ro. In
the case of NLI and TruthfulQA, where context sen-
tences are typically short (often single sentences),
we introduce perturbations through word insertion,
as inspired by Atanasova et al. (2023). Specifically,
we use Part-of-Speech (POS) tagging to identify
verbs and adjectives in the context sentences, as
these are likely to have a greater impact, and re-
place them with alternative words. We then feed
the perturbed input to the model to generate a new
rationale Rn. Details of generating counterfactual
rationales are provided in Appendix A.1.

Evaluation metrics For sub-sentence removal
perturbations, we calculate the semantic related-
ness between the removed text span w and the orig-
inal rationale, denoted as Swo = Sim(w,Ro), and
between the removed span and the new rationale,
denoted as Swn = Sim(w,Rn). A faithful model
is expected to produce a significant semantic vari-
ation, calculated as ∆(Swo−Swn), as the removed
sub-sentence should be closely related to the origi-
nal rationale but less similar to the new rationale.
For word insertion perturbations, we calculate the
percentage of new rationales that include the newly
inserted word, denoted as word inclusion. Both a
large semantic variation and high word inclusion
indicate greater rationale faithfulness.

4.2 Main Results

We compare the baselines in terms of task per-
formance (Acc), faithfulness (Faith), and overall
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Backbone Classifier Generative Expert Drift (full)

Metrics Acc Faith Overall Acc Acc Faith Overall Acc Faith Overall

Student Answer Assessment (ASAP)

Q1 28% 0.034 0.524 85% 76%∗ 0.094△ 1.509 57% 0.052 0.965
Q2 28% 0.051 0.588 72% 48% 0.114△ 1.480 68%∗ 0.050 0.977
Q3 45% 0.042 0.774 91% 71% 0.061△ 1.302 90%∗ 0.058 1.450
Q4 38% 0.001 0.380 88% 67% 0.053 1.174 84%∗ 0.102△ 1.821

NLI

SNLI 49% 0.110 0.490 86% 76%∗ 0.130 0.942 69% 0.150△ 1.054
MNLI 57% 0.090 0.737 88% 76% 0.090 0.927 77%∗ 0.190△ 1.770

QA

TruthQA 47% 0.020 0.470 100% 70% 0.240△ 1.700 73%∗ 0.180 1.457

Overall Avg 42% 0.050 0.566 87% 69% 0.112△ 1.290 74%∗ 0.112△ 1.356

Table 1: Evaluation results of task performance (Acc) and normalized rationale faithfulness scores (Faith),
and overall evaluation across three different tasks with LLaMA3-8B. Classifier and Generative Expert denote
results for task reward model and rationale reward model, respectively. The best overall results are marked in bold,
and best Acc and faithfulness are marked in ⋆ and △, respectively.

performance across both metrics. The full results
across the three tasks are shown in Table 1 4.

Task Performance The classifier achieves the
best accuracy across all the datasets, making it a
reliable source for label predictions in our Drift
framework. Conversely, the backbone model ex-
hibits the poorest task performance compared to
both the expert and Drift. Despite not being spe-
cially trained for classification tasks, expert models,
trained primarily for generative tasks, outperform
backbone models. This demonstrates the impor-
tance of domain-specific training for task perfor-
mance. For generalizability, all the expert models
shown in this table are of equal or smaller size
than the backbone model, where the LLaMA3-8B
global expert is used for ASAP, while two differ-
ent LLaMA2-7B global models are applied for the
NLI and QA tasks. Drift outperforms the ex-
pert in accuracy on five out of seven datasets, with
a larger margin in ASAP (except for Q1). This
improvement could be attributed to the fine-tuned
classifier’s ability to provide plausible and accurate
information early in the reasoning process.

Faithfulness evaluation The Faith columns in
Table 1 present the normalized faithfulness scores
of the generated rationales. The original faithful-
ness scores, i.e., semantic variation or word in-
clusion introduced in Section 4.1.3, varied signif-
icantly across tasks. Since the classifier does not
generate rationales, it is excluded from this evalua-

4As the classifier can’t generate rationales, faithfulness
evaluation is not applicable to it.

tion. Overall, Drift shows better faithfulness com-
pared to the Backbone model, except for Q2, where
it scores 0.050 vs 0.051. It also shows a clear advan-
tage over the expert models on the NLI datasets. Al-
though the expert is generally regarded as a source
of faithfulness, the superior performance of Drift
over the global expert (Llama2-7B) on NLI tasks
may be contributed to the enhanced context learn-
ing capabilities of the larger backbone model.

Overall performance We average the accuracy
and faithfulness scores for each method on all
the datasets to see the overall performance. To
standardize the faithfulness results across different
tasks, we applied min-max normalization within
each dataset’s result5. Our experimental results re-
veal that Drift can improve both task performance
(Acc) and faithfulness of the rationale generated by
the Backbone model with the incorporation of both
task and rationale rewards without being fine-tuned
on in-domain datasets.

Effects with different backbone models Table
2 summarizes the results of using Mistral-7B as the
backbone model. Drift outperforms the Backbone
in both task performance and rationale faithfulness
across all datasets. For Acc, Drift outperforms
the Backbone model by large margins, particularly
in NLI, where the accuracy on SNLI and MNLI
is improved by 32% and 37%, respectively. Sim-
ilarly, in ASAP and QA, accuracy improvements
are notable, with gains as high as 49% on Q2. For
rationale faithfulness, Drift also demonstrates sub-

5Min and max values we used are presented in Table A1.
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Backbone Drift

Datasets Acc Faith Overall Acc Faith Overall

Student Answer Assessment (ASAP)

Q1 31% 0.005 0.310 80%∗ 0.042△ 1.111
Q2 38% 0.023 0.380 69%∗ 0.080△ 1.316
Q3 35% 0.028 0.477 84%∗ 0.034△ 1.051
Q4 45% 0.005 0.489 80%∗ 0.008△ 0.868

:Avg 37% 0.015 0.414 78%∗ 0.041△ 1.087

NLI

SNLI 47% 0.140 0.743 79%∗ 0.150△ 1.154
MNLI 41% 0.070 0.410 78%∗ 0.160△ 1.530
:Avg 44% 0.105 0.576 79%∗ 0.155△ 1.342

QA

TruthfulQA 43% 0.170 1.112 72%∗ 0.200↑ 1.538

Table 2: Evaluation results of task performance (Acc)
and normalized rationale faithfulness scores (Faith)
across three different tasks using Mistral 7B. The best
overall results are marked in bold, and best Acc and
faithfulness are marked in ⋆ and △, respectively.

stantial gains, especially for TruthfulQA and Q2
in ASAP, where an increase from 0.170 to 0.200
and a remarkable jump from 0.023 to 0.080 are
observed. These results further confirm the effec-
tiveness and generalizability of Drift in enhancing
both accuracy and rationale faithfulness, regardless
of the type and size of the backbone model.

4.3 Ablation Studies

We ablate the full Drift model into its task and
rationale reward components to examine their in-
dividual effects, as shown in Fig. 3. For accuracy
(Top), adding the rationale reward (w. Rationale)
alone generally enhances task performance over
the Backbone model on most tasks, or maintains
comparable performance in others. In contrast, the
task reward (w. Task) alone provides a notable im-
provement on the Student Answer Assessment task
but is detrimental to performance on the NLI and
QA tasks when compared to the Backbone. We
attribute this due to the complexity of hard con-
straint task reward in a multiple token combined
label space. The full Drift model, integrating both
reward types, consistently achieves the highest ac-
curacy across all three tasks shown. For faithful-
ness (Bottom), the rationale reward component (w.
Global, depicted by the light blue/greenish bar)
consistently improves faithfulness scores over the
Backbone across all tasks. Notably, the full Drift
model further enhances faithfulness beyond what
the rationale reward achieves alone, obtaining the
highest faithfulness scores in all evaluated tasks.
This indicates that the combination of both task
and rationale rewards within the Drift model is

advantageous for improving both task performance
and rationale faithfulness.

Figure 3: Ablation results for task performance (Top)
and faithfulness (Bottom). We compare among Back-
bone, Backbone w/ Task Reward, Backbone w/ Ratio-
nale Reward and Drift (full).

5 Further Analysis

We assess the generalizability of Drift under dif-
ferent settings. We also examine the faithfulness
source qualitatively from domain-specific word dis-
tributions and a case study.

5.1 Incorporating Weak Expert Model
Drift is compatible with rationale rewards derived
from models of varying sizes. Details on incor-
porating global experts with different tokenization
methods are elaborated in Appendix A.1. Here, we
use an expert model based on Mistral-7B (weak ex-
pert), specifically trained for scientific QA, rather
than fine-tuned on the ASAP dataset validation set
(referred to as out-of-task). The performance of
this expert is compared to that of a LLaMA3-8B-
based expert model (strong expert), fine-tuned on
the ASAP train set (referred to as in-task). The
results are presented in Table 3. Despite a modest
reduction in performance from the out-of-task ex-
pert compared to the specialized in-task expert, the
incorporation of the out-of-task expert model con-
sistently provides clear advantages over the back-
bone models across all subsets. These results are
crucial in demonstrating the generalizability of
Drift, showcasing its ability to leverage weak
supervision for faithfulness enhancement. This
challenges the common assumption in many ex-
isting constrained generation methods, where a
specialized in-task trained expert model is typi-
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cally required (Liu et al., 2024a; Hong et al., 2023;
Anonymous, 2024).

Experts Backbone w. Weak Expert w. Strong Expert

Datasets Acc Faith Acc Faith Acc Faith

Q1 28% 0.034 59% 0.123 57% 0.052
Q2 28% 0.051 55% 0.064 68% 0.050
Q3 45% 0.042 67% 0.089 90% 0.058
Q4 38% 0.001 56% 0.104 84% 0.102

Avg 35% 0.032 59% 0.096△ 75%⋆ 0.066

Table 3: Performance of Drift when utilizing different
generative experts, based on the LLaMA3-8B back-
bone, where the first two columns are copied from back-
bone performance for better comparison. The best Acc
and faithfulness are marked in ⋆ and △, respectively.

5.2 Comparing with Local Logit Fusion

We also observed that contrastive decoding for con-
strained generation, achieved by injecting logits
from an expert model, typically updates the logits
based solely on the current token, without consider-
ing future tokens (Liu et al., 2024b,a; Anonymous,
2024). To highlight the advantages of the looka-
head characteristics of our rationale reward, we
replace the RationaleReward function mentioned
in Algorithm 1 with a straightforward logit fusion,
inspired by (Liu et al., 2024a). This method is com-
pared with a decoding approach that fuses the token
probabilities from the expert and backbone mod-
els at each timestep via interpolation. As shown
in Table 4, rationales generated from logits fusion
baseline are among 55% less faithful on average
compared with ours (displayed in Table 1)6, their
task performance is even lower than some of the
backbone results. The theoretical advantage be-
tween logit fusion and our lookahead reward
(rationale reward) is that our method consid-
ers future tokens’ plausibility when scoring the
currently generated token.

5.3 Domain-specific Word Distribution

We utilize TF-IDF to select domain-specific words
(after removing the stopwords) from the student
responses in the student answer assessment dataset.
The selected words and their associated TF-IDF
scores are depicted in the blue curve (context) in
Figure 4. Since the TF-IDF score reflects the im-
portance of these contextual words, we calculate
the TF-IDF scores for the same words within the

6Note that more than 50% of the samples failed to generate
responses due to the fused logit being impractical for the
backbone model.

Datasets Acc Faith

Q1 34% (-40%) 0.028 (-46%)
Q2 22% (-68%) 0.037 (-26%)
Q3 40% (-56%) 0.019 (-67%)
Q4 29% (-65%) 0.019 (-81%)

Avg 31% (-57%) 0.026 (-55%)

Table 4: logitfusion results on both task performance
and faithfulness for Student Answer Assessment. The
relative changes compared with Drift (Full) are in
brackets.

rationales generated by the backbone model (in or-
ange) and our-full model (in green). This allows
us to verify whether the generated rationales align
well with the important spans in the context. It is
clear that the green curve is mostly above the or-
ange curve, showing that our method can respond
more actively to those domain-specific words, such
as “experiment”, “data”, “replicate”, “substances”,
and “nuclear”. Moreover, we calculate the seman-
tics overlap using BLEU between the given context
and generated rationale for a quantitative analysis.
Specially, we calculate the BLEU between the gen-
erated rationale and the given prompt, including
the question, student answer and instruction (Re-
sults in Table 5). This result further verify that
the faithful source of Drift from the generation of
domain-specific words.

Method 1-gram 2-gram 3-gram 4-gram

Backbone 0.106 0.090 0.058 0.025
Drift 0.452 0.333 0.167 0.058

Table 5: Semantic relatedness between assessment
prompt and generated rationale. Higher values imply
higher faithfulness.

5.4 Case Studies

To highlight the differences between the rationales
from the backbone model and ours, we randomly
select two examples from Student Answer Assess-
ment and Natural Language Inference datasets, as
shown in case study 5.4. For this assessment task,
four key elements related to protein synthesis are
expected (e.g., mRNA exits nucleus, codons are
read). The student response lists mitosis phases,
with no valid key elements present. The backbone
rationale is mis-aligned—e.g., “links the steps in-
volved in protein synthesis”, and the assessed score
is higher than the max score for the question. Our
constraint-based rationale correctly notes the ab-
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Figure 4: Visualization of the distribution of domain-specific word.

sence of all four elements and assigns 0 points.
For the NLI dataset, we present a perturbation

example where the word frugally is inserted at the
beginning of the context. Our method-generated
rationale could capture this word sensitively and be
reflected in the rationale content. While the back-
bone model acts less robust, it completely ignores
this new insertion and incorrectly predicts the label.

Case studies

Student Answer Assessment
Question: Starting with mRNA leaving the nucleus, list and
describe four major steps involved in protein synthesis.
Marking Rubric: 3 points: Four key elements; 2 points: Three
key elements; 1 point: One or two key elements; 0 points: No key
elements mentioned.
Student Response: “There is anaphase, prophase, metophase,
and thelophase.” (no valid key elements present)

* Backbone: Score: 4 point; rationale: links the steps involved in
protein synthesis, extending into the cytoplasm.

* Drift: 0 points; The student’s answer does not address the ques-
tion asked.

Natural Language Inference
Perturbed Premise: frugally Requires free registration.
Hypothesis: Does not require free registration.

* Backbone: Entailment; Requires free registration is a necessary
condition for only if Requires free registration.

* Drift: Contradiction; The premise states that the website [fru-
gally] requires free registration, which implies that a user must
provide some information or sign.

6 Conclusion

In this paper, we address the critical challenge of
enhancing both accuracy and faithfulness in large
language models. Specially, we introduce a proba-
bilistic inference paradigm that incorporates fine-
grained and look-ahead rewards to search desirable
trajectories. Compared to existing inference-time
solutions, our method distinguishes itself through a
domain-specific proposal distribution that increases
the model’s responsiveness to key words in the con-
text. We verify the effectiveness of our approach
across three diverse datasets, evaluating both task
performance and faithfulness metrics. Furthermore,
our model ablation study demonstrates the superi-

ority of integrating both task and rationale rewards.

Limitations

While our proposed method, Drift, demonstrates
promising results in enhancing both task perfor-
mance and rationale faithfulness, several limita-
tions warrant discussion:

(1) The evaluation tasks are currently confined to
label generation, categorizing them as classification
tasks with a finite output space. This scope does
not yet encompass generative tasks such as mathe-
matical problem-solving. Although Appendix B.1
outlines a potential extension of our framework to
such generative tasks, empirical evaluations remain
to be conducted.

(2) The current design of the task reward model
imposes a strong constraint during the generation
process. Ideally, the task reward would effectively
re-weight predictions by combining rationale re-
wards with the backbone model’s original predic-
tive probabilities. However, our empirical results
indicate that because the classifier already achieves
high accuracy, incorporating its outputs into the
backbone’s token space can introduce prediction
uncertainty, thereby compromising both accuracy
and faithfulness.

(3) The exploration of different expert models
has not been exhaustive. While we have shown
that local, global, and weak expert models can con-
tribute to the framework, these experiments are
limited considering the vast diversity of pretrained
models available on Hugging Face. Future work
will aim to investigate how the relevance of ex-
pert models’ knowledge to the evaluation task in-
fluences task performance, and whether patterns
emerge that are analogous to how humans seek and
utilize useful resources.
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A Appendix

A.1 Experiment Setup

We utilize a comprehensive experiment approach
with seven datasets across three distinct reasoning
tasks. The backbone models adopted for experi-
ments, dataset details, counterfactual generation
algorithms and hyper-parameters setting are out-
lined below.

Backbone model choice. Our experiments se-
lect two commonly used backbone model choices:
LLaMA3.1-8B (Dubey et al., 2024)7, and Mistral-
7B (Jiang et al., 2023)8. Both models are down-
loaded from the HuggingFace models’ space, and
we adopted the model implementation from the
Huggingface Transformer 9.

Hyper-parameters for inference. For efficient
model inference, we applied 8-bit quantization on
both the backbone and rationale reward models for
Our+Expert and Our(full) experiments. The task
reward models are loaded without any quantization.
We set a maximum allowance of 10 different parti-
cles during decoding, which means it will keep a
maximum of 10 different paths during the search
through different weighted decoding paths. The
beam factor for expanding searching at each par-
ticle is set as 3. To optimize the computational
resources for generation, we applied different max-
imum token length sizes for each task, which we
will introduce under each task. As demonstrated
in Algorithm 1, our task rewards will be disabled
once the answer token is generated to remove the
token space constraint. We use a batch size of 64
to inference our framework on a single NVIDIA
A100 40G graphic card. The random seed has been
set as 42 for all the components.

Predicted label evaluation details. Apart from
the faithfulness evaluation details presented in Sec-
tion 4, the evaluation for the predicted label is ex-
tracted and compared with the ground-truth label
to calculate the accuracy score. Following each
prompt template, we designed a regular expression
to extract the score/labels from the generated se-
quence. If the model fails to follow the prompt to
generate a format valid label token, then it counts
as a wrongly predicted instance. In short, only cor-
rectly predicted instances that follow the prompt

7meta-llama/Llama-3.1-8B-Instruct
8mistralai/Mistral-7B-Instruct-v0.3
9https://huggingface.co/docs/transformers/

required output pattern count towards the accuracy
score.

Dealing with rewards from different tokenisa-
tion models. In our approach, we address the
challenge of integrating rewards derived from vari-
ous tokenisation models used by rationale reward
models. Specifically, after the generation of each
token, it is converted into token IDs according to
the rationale reward models’ token space. Subse-
quently, rewards are calculated based on samples
drawn from the reward model. This method ensures
that the generated tokens are consistently evalu-
ated in the context of the expert model’s language
modeling, and therefore generating meaningful pre-
dicted rewards.

Dataset Min Max

ASAP-1 0.005 0.123
ASAP-2 0.023 0.114
ASAP-3 0.019 0.089
ASAP-4 0.001 0.104
SNLI 0.110 0.220
MNLI 0.070 0.190
TruthfulQA 0.020 0.240

Table A1: Normalization ranges for each dataset.

Minimum and maximum values for normaliza-
tion. Because our faithfulness metric does not
naturally span the interval [0, 1] (unlike accuracy),
we normalize all faithfulness scores and added up
in the Overall scores using the dataset-specific
ranges presented in Table A1:

Overall = Accuracy + Norm(Faith).

The Faith columns reported in experiment tables
contain the original, unnormalized values.

A.1.1 Student Answer Assessment Setup
We employed the ASAP 10 dataset to evaluate our
methods’ effectiveness on student answer assess-
ment reasoning. Following the rationale genera-
tion paradigm established by (Li et al., 2023), we
adopted the same rationale generation prompt used
in their study, focusing on four subsets of science
and biology questions. For each dataset, we ran-
domly selected 100 instances from the test split. All
the task and rationale reward models are trained
solely on the training set. Our empirical analysis
shows that zero-shot students answer assessment

10https://kaggle.com/competitions/asap-sas
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Task Reward Rationale Reward

Student Answer Assessment

A DeBERTa-v3-large (He et al., 2023) text classifier fine-tuned on
the ASAP train sets.

Choice 1 (LLaMA base): An open-source assessment rationale
generation LLM developed by Li et al. (2024a), trained on syn-
thetic rationales generated by GPT-4.
Choice 2 (Mistral base): An open-source, science QA model:
Weyaxi/Einstein-v2-7B. This is an out-of-distribution expert model
that has never been trained for student assessment.

NLI

An Open-source BRAT model fine-tuned for classification on train
set of multiple NLI datasets, such as MNLI, SNLI etc,.

A LoRA fine-tuned LLaMA 2 model with train set of E-
SNLI (Camburu et al., 2018).

QA

allenai/truthfulqa-truth-judge-llama2-7B, which trained on Truth-
fulQA’s train set.

A LLaMA 2 7B model trained with train set of truthful QA, re-
leased by Zhang et al. (2024b).

Table A2: Summary of model choices of our task and rationale reward models.

rationales are typically generated within an aver-
age of less than a hundred tokens sequence length.
Therefore, we set the maximum generation length
for this task as 100.

Prompt template. We apply the prompt tem-
plate provided in Figure 5 to all our test instances.
The question, key_elements, marking_rubric,
and student_answer correspond to question-
dependent question context provided within the
dataset:

Task and rationale reward model setup. As
demonstrated in Table A2, we utilize a text clas-
sifier fine-tuned on the ASAP datasets, built on
DeBERTa-v3-large model (He et al., 2023) as
the task reward model. We adopted two ratio-
nale model choices: Choice 1: An open-source
explainable student answer scoring LLM devel-
oped by Li et al. (2024a). The model is fine-
tuned using synthetically generated student an-
swer assessment data with 4-bit quantization with
LoRA. Choice 2: An out-of-domain, mistral 7B
model fine-tuned on science question and answer-
ing datasets: Weyaxi/Einstein-v2-7B.

Faithfulness evaluation: sentence-level pertur-
bation for student answer assessment dataset.
As shown in Algorithm 2, our evaluation strat-
egy involved systematically modifying key phrases
from a paragraph of student answer xi in the in-
put data by comparing with each key answer ele-
ment ki from the whole key answer elements set
K. Then, observe the resultant variations in the
generated rationales. By doing so, we could as-
certain whether the rationales remained consistent
and aligned with the altered inputs, thereby provid-
ing insights that whether the rationale generated

is faithful to the given input. Our evaluation ap-
proach helps estimate that whether rationales are
contextually relevant and robust against variations
in input, thereby enhancing their practical utility in
real-world applications.

Algorithm 2 Student Answer Perturbation Algo-
rithm
1: procedure PERTURBATION(xi,K)
2: S← Tokenize(xi)
3: I← array of zeros with length(|S|)
4: for j ← 1 to |S| do
5: for k ← 1 to |K| do
6: I[j]← I[j] + Sim(S[j],K[k])
7: end for
8: end for
9: imax ← argmax(I)

10: S← S \ {S[imax]}
11: Ŝ← Joint(S)
12: return Ŝ
13: end procedure

A.1.2 Natural Language Inference (NLI)
Setup

For NLI, we utilized two key datasets: the Stan-
ford Natural Language Inference (SNLI) (Bowman
et al., 2015) and the Multi-Genre Natural Language
Inference (MNLI) (Williams et al., 2018) datasets.
These datasets are critical for assessing the abil-
ity of our models to handle a range of inferential
relationships across various genres, thus provid-
ing a comprehensive view of model performance
in understanding language context. We randomly
selected 100 instances from the official validation
split for each dataset; for the MNLI dataset, we
used the “matched” set. We empirically examined
the explanations from the ESNLI dataset have an
average sequence length shorter than 30 tokens.

6863



[Question]: {question}
[Key Elements]: {key_elements}
[Marking Rubric]: {marking_rubric}
[Student Answer]: {student_answer}
Please assess this student response and provide rationale, in the format of “x point/s; rationale":

Figure 5: Prompt template for student answer assessment.

Therefore, we employed the maximum generation
length of 30 tokens for the NLI task.

Prompt template. We use the prompt template
presented in Figure 6 to evaluate our method on
all the NLI tasks. The premise and hypothesis
are placeholders corresponds to the premise and
hypothesis from the dataset.

Task and rationale reward model setup. As
demonstrated in Table A2, we use an open-source
fine-tuned BART model (Lewis et al., 2020) to per-
form NLI classification as the task reward model.
Please refer to their released repository for detailed
training data usage and splits. For the rationale
reward model, we utilize a LoRA fine-tuned Llama-
2-7B model on the ESNLI dataset (Camburu et al.,
2018). The model is trained solely on the training
set of the ESNLI dataset. To reduce computational
resources, the task reward model is disabled after
generating the answer token.

Hyper-parameters for inference. For efficient
model inference, we applied 8-bit quantization on
both the backbone and rationale reward models.
The task reward model is loaded without quantiza-
tion. We set a maximum allowance of 10 different
particles during decoding. The beam factor for
searching is set as 3, with a maximum token length
of 30.

Faithfulness evaluation: word-level perturba-
tion for NLI tasks. As shown in Algorithm 3,
for NLI, we identify a keyword among adjective
and verb words by POS-tagging using Tokenize-
AndTag. The adj and adv word lists are imported
from the nltk package. Once the tokens from the
premise or hypothesis are tagged, we randomly
insert an irrelevant adjective word into either the
premise or hypothesis to create a perturbation using
the GenerateExample function. The GenerateEx-
ample function takes the whole token lists and the
randomTarget word and edit position to reconstruct
a perturbed sequence. The goal of evaluation is
to detect the modified word from the generated ra-
tionale to examine the faithfulness of the rationale

generation method.

Algorithm 3 NLI Word Perturbation Generation
1: procedure PERTURBATION(xi, adj, adv)
2: tokens, tags← TokenizeAndTag(xi)
3: targets← IdentifyTargets(tags, adj, adv)
4: randomTarget← SampleTargets(targets)
5: example ←

GenerateExample(tokens, randomTarget)
6: return example
7: end procedure

A.1.3 QA
The TruthfulQA dataset contains questions and an-
swers. Each question has multiple answers, which
were adapted into a multiple-choice format. The
model’s task for this dataset is to select the most
truthful answer among all the candidate options.

Prompt template. We use the prompt template
presented in Figure 7 to evaluate our method on the
QA task. The question is the question row from
the dataset, and the choices are candidate answers
from the dataset.

Task and rationale reward model setup. We
use an open-source truth judge released by Allen
AI: allenai/truthfulqa-truth-judge-llama2-7B as the
task reward model. For the rationale reward model,
we utilize a 7B LLM specialized in truthful QA,
released by Zhang et al. (2024b). Please refer to
the original paper for the detailed training setup
and dataset split for the task and rationale reward
models. To reduce computational resources, the
task reward model is disabled after generating the
answer token.

Hyper-parameters for inference. For efficient
model inference, we applied 8-bit quantization on
both the backbone and rationale reward models.
The task reward model is loaded without quantiza-
tion. We set a maximum allowance of 10 different
particles during decoding. The beam factor for
searching is set as 3, with a maximum token length
of 30.

Faithfulness evaluation: word-level perturba-
tion for QA task. For QA task, we identify an
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Here is a premise: {premise}
Here is a hypothesis: {hypothesis}
Please choose whether the hypothesis is entailment, neutral, or contradiction to the premise, and provide a
rationale for your choice. Output the label and rationale in the format of “Prediction: [label]; [explana-
tion]”:
Prediction:

Figure 6: Prompt template for NLI tasks.

Question: {question}
Choose the best answer from following options: {choices}
Output the selection with reason in the format of Answer: “choice; reason”. Answer:

Figure 7: Prompt template for TruthfulQA.

influential word to be replaced, similar to the Algo-
rithm 3. Instead of using an algorithm to perturb
the word, in this task, we query the GPT-4 model
to modify the original sentence and output both the
modified word and the perturbed sentence. Evalu-
ating the faithfulness of the task still depends on
the successful rate of reflection of modified words
from the rationale.

B Additional Experiment Results

B.1 Dealing with Infinite Label Space

Our method is extendable to scenarios with an infi-
nite label space (|C| = ∞), even though the current
evaluations are performed on tasks where the label
space is constrained (|C| = N ∈ R). For instance,
in mathematical problem-solving, the answer can
be any arbitrary number. In such cases, the ex-
pert model provides a prediction M , with its con-
fidence expressed as the probability w1 assigned
to M , and w2 to the second most probable predic-
tion. The ratio w1

w2
serves as an indicator of the

expert’s confidence in delivering M (Moon et al.,
2020). This confidence is then used as a multiplier
to enhance the backbone model’s prediction for M .
Finally, the backbone model’s transition distribu-
tion is renormalized to maintain a valid probability
distribution.

B.2 Computation Cost Analysis

Although rationale and task rewards introduced
new computations during the generation processes,
we didn’t observe a huge computational cost incre-
ment in our method. As shown in Figure A3, we
calculated the inference time on the Student Answer
Assessment question #4 to compare the time used
between methods on the same GPU. We use a beam
size of 3 and a maximum of 100 tokens in genera-

tion settings. Compared with the backbone model,
our method only increased by 32% on inference
time. Compared to other sequential Monte Carlo
method, such as PPO-MCTS (Liu et al., 2024b),
which has a 2S times overhead compared to stan-
dard decoding from PPO models (S is the number
of simulations), our inference-time decoding main-
tains both the performance and greatly improve the
computation efficiency.

Method Time Cost

Backbone (Beam Search) 88 mins
:Drift w. Task 100 mins
:Drift w. Rationale 103 mins
Drift (Full) 116 mins

Table A3: Computation cost for different methods on
Student Answer Assessment Q4.

B.3 Proof of Pruned Monte Carlo Search

Definition. We first define the notations: A,B, C
are three searched trajectories, among which one
trajectory will be pruned. NA, NB, NC are the
number of simulations conducted on the corre-
sponding trajectories, WA, WB WC are the total
wins for the trajectories.

The estimated value of each branch, i.e., the
probability of being sampled is defined as:

VA =
WA

NA
, VB =

WB

NB

Without loss of generalisability, we assume the
initial condition and branch C be identified and
pruned:

VA > VB =⇒ WA

NA
>

WB

NB
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Our proof goal is to show after pruning C, the
probability of sampling B can be larger than A.

Proof. After pruning C, the remaining resources
(i.e., simulations) are redistributed to branches A
and B. We define RA and RB are the additional
simulations allocated to A and B.

After pruning, the new number of simulations
for branches A and B are:

N ′
A = NA +RA, N ′

B = NB +RB

After pruning: we define W ′
A, W ′

B as new total
wins after additional simulations. Therefore, the
new values for A and B are as follows:

V ′
A =

W ′
A

NA +RA
(new estimated value of A)

V ′
B =

W ′
B

NB +RB
(new estimated value of B)

To establish that V ′
B > V ′

A, we require:

W ′
B

NB +RB
>

W ′
A

NA +RA

Cross-multiplying gives:

W ′
B · (NA +RA) > W ′

A · (NB +RB)

Given that W ′
B > WB and W ′

A < WA, it is
possible for the following to hold true. For ex-
ample, in our NLI dataset, the undesirable labels
are ’contradictory’, so we remove the trajectory C
consisting of ’contradictory’. For the remaining
trajectories, A and B are related to ’contradictory’
and ’Neutral’ (not exact label, but similar attitude),
respectively. With the removal of ’contradictory’,
the new sentence could turn to neutral attitude, so
the probability of selecting all ’Neutral’-related tra-
jectories could be largely increased and probability
of selecting all ’Neutral’-related trajectories could
be largely penalised.

In this case, even we increase W ′
B by increasing

the NB , the substantial enhancement of W ′
B still

could lead to a larger V ′
B .

Thus, we can conclude: After pruning branch
C, the additional simulations allocated to branch
B can increase its estimated value due to improved
exploration, leading to:

V ′
B > V ′

A
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