This paper proposes the building of Xiaomingbot, an intelligent, multilingual and multimodal software robot equipped with four inte- gral capabilities: news generation, news translation, news reading and avatar animation. Its system summarizes Chinese news that it automatically generates from data tables. Next, it translates the summary or the full article into multiple languages, and reads the multi- lingual rendition through synthesized speech. Notably, Xiaomingbot utilizes a voice cloning technology to synthesize the speech trained from a real person’s voice data in one input language. The proposed system enjoys several merits: it has an animated avatar, and is able to generate and read multilingual news. Since it was put into practice, Xiaomingbot has written over 600,000 articles, and gained over 150,000 followers on social media platforms.
In this paper, we introduce TextBrewer, an open-source knowledge distillation toolkit designed for natural language processing. It works with different neural network models and supports various kinds of supervised learning tasks, such as text classification, reading comprehension, sequence labeling. TextBrewer provides a simple and uniform workflow that enables quick setting up of distillation experiments with highly flexible configurations. It offers a set of predefined distillation methods and can be extended with custom code. As a case study, we use TextBrewer to distill BERT on several typical NLP tasks. With simple configurations, we achieve results that are comparable with or even higher than the public distilled BERT models with similar numbers of parameters.
We present a system that allows a user to search a large linguistically annotated corpus using syntactic patterns over dependency graphs. In contrast to previous attempts to this effect, we introduce a light-weight query language that does not require the user to know the details of the underlying syntactic representations, and instead to query the corpus by providing an example sentence coupled with simple markup. Search is performed at an interactive speed due to efficient linguistic graph-indexing and retrieval engine. This allows for rapid exploration, development and refinement of syntax-based queries. We demonstrate the system using queries over two corpora: the English wikipedia, and a collection of English pubmed abstracts. A demo of the wikipedia system is available at https://allenai.github.io/spike/ .
We present Tabouid, a word-guessing game automatically generated from Wikipedia. Tabouid contains 10,000 (virtual) cards in English, and as many in French, covering not only words and linguistic expressions but also a variety of topics including artists, historical events or scientific concepts. Each card corresponds to a Wikipedia article, and conversely, any article could be turned into a card. A range of relatively simple NLP and machine-learning techniques are effectively integrated into a two-stage process. First, a large subset of Wikipedia articles are scored - this score estimates the difficulty, or alternatively, the playability of the page. Then, the best articles are turned into cards by selecting, for each of them, a list of banned words based on its content. We believe that the game we present is more than mere entertainment and that, furthermore, this paper has pedagogical potential.
We introduce Talk to Papers, which exploits the recent open-domain question answering (QA) techniques to improve the current experience of academic search. It’s designed to enable researchers to use natural language queries to find precise answers and extract insights from a massive amount of academic papers. We present a large improvement over classic search engine baseline on several standard QA datasets and provide the community a collaborative data collection tool to curate the first natural language processing research QA dataset via a community effort.
Exploiting syntagmatic information is an encouraging research focus to be pursued in an effort to close the gap between knowledge-based and supervised Word Sense Disambiguation (WSD) performance. We follow this direction in our next-generation knowledge-based WSD system, SyntagRank, which we make available via a Web interface and a RESTful API. SyntagRank leverages the disambiguated pairs of co-occurring words included in SyntagNet, a lexical-semantic combination resource, to perform state-of-the-art knowledge-based WSD in a multilingual setting. Our service provides both a user-friendly interface, available at http://syntagnet.org/, and a RESTful endpoint to query the system programmatically (accessible at http://api.syntagnet.org/).
Syntactic dependencies can be predicted with high accuracy, and are useful for both machine-learned and pattern-based information extraction tasks. However, their utility can be improved. These syntactic dependencies are designed to accurately reflect syntactic relations, and they do not make semantic relations explicit. Therefore, these representations lack many explicit connections between content words, that would be useful for downstream applications. Proposals like English Enhanced UD improve the situation by extending universal dependency trees with additional explicit arcs. However, they are not available to Python users, and are also limited in coverage. We introduce a broad-coverage, data-driven and linguistically sound set of transformations, that makes event-structure and many lexical relations explicit. We present pyBART, an easy-to-use open-source Python library for converting English UD trees either to Enhanced UD graphs or to our representation. The library can work as a standalone package or be integrated within a spaCy NLP pipeline. When evaluated in a pattern-based relation extraction scenario, our representation results in higher extraction scores than Enhanced UD, while requiring fewer patterns.
Traditional search engines for life sciences (e.g., PubMed) are designed for document retrieval and do not allow direct retrieval of specific statements. Some of these statements may serve as textual evidence that is key to tasks such as hypothesis generation and new finding validation. We present EVIDENCEMINER, a web-based system that lets users query a natural language statement and automatically retrieves textual evidence from a background corpora for life sciences. EVIDENCEMINER is constructed in a completely automated way without any human effort for training data annotation. It is supported by novel data-driven methods for distantly supervised named entity recognition and open information extraction. The entities and patterns are pre-computed and indexed offline to support fast online evidence retrieval. The annotation results are also highlighted in the original document for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization. EVIDENCEMINER can help scientists uncover important research issues, leading to more effective research and more in-depth quantitative analysis. The system of EVIDENCEMINER is available at https://evidenceminer.firebaseapp.com/.
We introduce Trialstreamer, a living database of clinical trial reports. Here we mainly describe the evidence extraction component; this extracts from biomedical abstracts key pieces of information that clinicians need when appraising the literature, and also the relations between these. Specifically, the system extracts descriptions of trial participants, the treatments compared in each arm (the interventions), and which outcomes were measured. The system then attempts to infer which interventions were reported to work best by determining their relationship with identified trial outcome measures. In addition to summarizing individual trials, these extracted data elements allow automatic synthesis of results across many trials on the same topic. We apply the system at scale to all reports of randomized controlled trials indexed in MEDLINE, powering the automatic generation of evidence maps, which provide a global view of the efficacy of different interventions combining data from all relevant clinical trials on a topic. We make all code and models freely available alongside a demonstration of the web interface.
Targeted syntactic evaluations have yielded insights into the generalizations learned by neural network language models. However, this line of research requires an uncommon confluence of skills: both the theoretical knowledge needed to design controlled psycholinguistic experiments, and the technical proficiency needed to train and deploy large-scale language models. We present SyntaxGym, an online platform designed to make targeted evaluations accessible to both experts in NLP and linguistics, reproducible across computing environments, and standardized following the norms of psycholinguistic experimental design. This paper releases two tools of independent value for the computational linguistics community: 1. A website, syntaxgym.org, which centralizes the process of targeted syntactic evaluation and provides easy tools for analysis and visualization; 2. Two command-line tools, ‘syntaxgym‘ and ‘lm-zoo‘, which allow any user to reproduce targeted syntactic evaluations and general language model inference on their own machine.
We present the first comprehensive, open source multimedia knowledge extraction system that takes a massive stream of unstructured, heterogeneous multimedia data from various sources and languages as input, and creates a coherent, structured knowledge base, indexing entities, relations, and events, following a rich, fine-grained ontology. Our system, GAIA, enables seamless search of complex graph queries, and retrieves multimedia evidence including text, images and videos. GAIA achieves top performance at the recent NIST TAC SM-KBP2019 evaluation. The system is publicly available at GitHub and DockerHub, with a narrated video that documents the system.
We present easy-to-use retrieval focused multilingual sentence embedding models, made available on TensorFlow Hub. The models embed text from 16 languages into a shared semantic space using a multi-task trained dual-encoder that learns tied cross-lingual representations via translation bridge tasks (Chidambaram et al., 2018). The models achieve a new state-of-the-art in performance on monolingual and cross-lingual semantic retrieval (SR). Competitive performance is obtained on the related tasks of translation pair bitext retrieval (BR) and retrieval question answering (ReQA). On transfer learning tasks, our multilingual embeddings approach, and in some cases exceed, the performance of English only sentence embeddings.
CodaLab is an open-source web-based platform for collaborative computational research. Although CodaLab has gained popularity in the research community, its interface has limited support for creating reusable tools that can be easily applied to new datasets and composed into pipelines. In clinical domain, natural language processing (NLP) on medical notes generally involves multiple steps, like tokenization, named entity recognition, etc. Since these steps require different tools which are usually scattered in different publications, it is not easy for researchers to use them to process their own datasets. In this paper, we present BENTO, a workflow management platform with a graphic user interface (GUI) that is built on top of CodaLab, to facilitate the process of building clinical NLP pipelines. BENTO comes with a number of clinical NLP tools that have been pre-trained using medical notes and expert annotations and can be readily used for various clinical NLP tasks. It also allows researchers and developers to create their custom tools (e.g., pre-trained NLP models) and use them in a controlled and reproducible way. In addition, the GUI interface enables researchers with limited computer background to compose tools into NLP pipelines and then apply the pipelines on their own datasets in a “what you see is what you get” (WYSIWYG) way. Although BENTO is designed for clinical NLP applications, the underlying architecture is flexible to be tailored to any other domains.
We introduce Stanza, an open-source Python natural language processing toolkit supporting 66 human languages. Compared to existing widely used toolkits, Stanza features a language-agnostic fully neural pipeline for text analysis, including tokenization, multi-word token expansion, lemmatization, part-of-speech and morphological feature tagging, dependency parsing, and named entity recognition. We have trained Stanza on a total of 112 datasets, including the Universal Dependencies treebanks and other multilingual corpora, and show that the same neural architecture generalizes well and achieves competitive performance on all languages tested. Additionally, Stanza includes a native Python interface to the widely used Java Stanford CoreNLP software, which further extends its functionality to cover other tasks such as coreference resolution and relation extraction. Source code, documentation, and pretrained models for 66 languages are available at https://stanfordnlp.github.io/stanza/.
We introduce jiant, an open source toolkit for conducting multitask and transfer learning experiments on English NLU tasks. jiant enables modular and configuration driven experimentation with state-of-the-art models and a broad set of tasks for probing, transfer learning, and multitask training experiments. jiant implements over 50 NLU tasks, including all GLUE and SuperGLUE benchmark tasks. We demonstrate that jiant reproduces published performance on a variety of tasks and models, e.g., RoBERTa and BERT.
We present MT-DNN, an open-source natural language understanding (NLU) toolkit that makes it easy for researchers and developers to train customized deep learning models. Built upon PyTorch and Transformers, MT-DNN is designed to facilitate rapid customization for a broad spectrum of NLU tasks, using a variety of objectives (classification, regression, structured prediction) and text encoders (e.g., RNNs, BERT, RoBERTa, UniLM). A unique feature of MT-DNN is its built-in support for robust and transferable learning using the adversarial multi-task learning paradigm. To enable efficient production deployment, MT-DNN supports multi-task knowledge distillation, which can substantially compress a deep neural model without significant performance drop. We demonstrate the effectiveness of MT-DNN on a wide range of NLU applications across general and biomedical domains. The software and pre-trained models will be publicly available at https://github.com/namisan/mt-dnn.
This paper presents LinggleWrite, a writing coach that provides writing suggestions, assesses writing proficiency levels, detects grammatical errors, and offers corrective feedback in response to user’s essay. The method involves extracting grammar patterns, training models for automated essay scoring (AES) and grammatical error detection (GED), and finally retrieving plausible corrections from a n-gram search engine. Experiments on public test sets indicate that both AES and GED models achieve state-of-the-art performance. These results show that LinggleWrite is potentially useful in helping learners improve their writing skills.
We present CLIReval, an easy-to-use toolkit for evaluating machine translation (MT) with the proxy task of cross-lingual information retrieval (CLIR). Contrary to what the project name might suggest, CLIReval does not actually require any annotated CLIR dataset. Instead, it automatically transforms translations and references used in MT evaluations into a synthetic CLIR dataset; it then sets up a standard search engine (Elasticsearch) and computes various information retrieval metrics (e.g., mean average precision) by treating the translations as documents to be retrieved. The idea is to gauge the quality of MT by its impact on the document translation approach to CLIR. As a case study, we run CLIReval on the “metrics shared task” of WMT2019; while this extrinsic metric is not intended to replace popular intrinsic metrics such as BLEU, results suggest CLIReval is competitive in many language pairs in terms of correlation to human judgments of quality. CLIReval is publicly available at https://github.com/ssun32/CLIReval.
We present ConvLab-2, an open-source toolkit that enables researchers to build task-oriented dialogue systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. As the successor of ConvLab, ConvLab-2 inherits ConvLab’s framework but integrates more powerful dialogue models and supports more datasets. Besides, we have developed an analysis tool and an interactive tool to assist researchers in diagnosing dialogue systems. The analysis tool presents rich statistics and summarizes common mistakes from simulated dialogues, which facilitates error analysis and system improvement. The interactive tool provides an user interface that allows developers to diagnose an assembled dialogue system by interacting with the system and modifying the output of each system component.
This paper introduces OpusFilter, a flexible and modular toolbox for filtering parallel corpora. It implements a number of components based on heuristic filters, language identification libraries, character-based language models, and word alignment tools, and it can easily be extended with custom filters. Bitext segments can be ranked according to their quality or domain match using single features or a logistic regression model that can be trained without manually labeled training data. We demonstrate the effectiveness of OpusFilter on the example of a Finnish-English news translation task based on noisy web-crawled training data. Applying our tool leads to improved translation quality while significantly reducing the size of the training data, also clearly outperforming an alternative ranking given in the crawled data set. Furthermore, we show the ability of OpusFilter to perform data selection for domain adaptation.
Label noise—incorrectly or ambiguously labeled training examples—can negatively impact model performance. Although noise detection techniques have been around for decades, practitioners rarely apply them, as manual noise remediation is a tedious process. Examples incorrectly flagged as noise waste reviewers’ time, and correcting label noise without guidance can be difficult. We propose LNIC, a noise-detection method that uses an example’s neighborhood within the training set to (a) reduce false positives and (b) provide an explanation as to why the ex- ample was flagged as noise. We demonstrate on several short-text classification datasets that LNIC outperforms the state of the art on measures of precision and F0.5-score. We also show how LNIC’s training set context helps a reviewer to understand and correct label noise in a dataset. The LNIC tool lowers the barriers to label noise remediation, increasing its utility for NLP practitioners.
Large Transformer-based language models can route and reshape complex information via their multi-headed attention mechanism. Although the attention never receives explicit supervision, it can exhibit recognizable patterns following linguistic or positional information. Analyzing the learned representations and attentions is paramount to furthering our understanding of the inner workings of these models. However, analyses have to catch up with the rapid release of new models and the growing diversity of investigation techniques. To support analysis for a wide variety of models, we introduce exBERT, a tool to help humans conduct flexible, interactive investigations and formulate hypotheses for the model-internal reasoning process. exBERT provides insights into the meaning of the contextual representations and attention by matching a human-specified input to similar contexts in large annotated datasets. By aggregating the annotations of the matched contexts, exBERT can quickly replicate findings from literature and extend them to previously not analyzed models.
We present a system for automatic diacritization of Hebrew Text. The system combines modern neural models with carefully curated declarative linguistic knowledge and comprehensive manually constructed tables and dictionaries. Besides providing state of the art diacritization accuracy, the system also supports an interface for manual editing and correction of the automatic output, and has several features which make it particularly useful for preparation of scientific editions of historical Hebrew texts. The system supports Modern Hebrew, Rabbinic Hebrew and Poetic Hebrew. The system is freely accessible for all use at http://nakdanpro.dicta.org.il
Natural language interfaces to databases(NLIDB) democratize end user access to relational data. Due to fundamental differences between natural language communication and programming, it is common for end users to issue questions that are ambiguous to the system or fall outside the semantic scope of its underlying query language. We present PHOTON, a robust, modular, cross-domain NLIDB that can flag natural language input to which a SQL mapping cannot be immediately determined. PHOTON consists of a strong neural semantic parser (63.2% structure accuracy on the Spider dev benchmark), a human-in-the-loop question corrector, a SQL executor and a response generator. The question corrector isa discriminative neural sequence editor which detects confusion span(s) in the input question and suggests rephrasing until a translatable input is given by the user or a maximum number of iterations are conducted. Experiments on simulated data show that the proposed method effectively improves the robustness of text-to-SQL system against untranslatable user input. The live demo of our system is available at http://www.naturalsql.com
We show SUGILITE, an intelligent task automation agent that can learn new tasks and relevant associated concepts interactively from the user’s natural language instructions and demonstrations, using the graphical user interfaces (GUIs) of third-party mobile apps. This system provides several interesting features: (1) it allows users to teach new task procedures and concepts through verbal instructions together with demonstration of the steps of a script using GUIs; (2) it supports users in clarifying their intents for demonstrated actions using GUI-grounded verbal instructions; (3) it infers parameters of tasks and their possible values in utterances using the hierarchical structures of the underlying app GUIs; and (4) it generalizes taught concepts to different contexts and task domains. We describe the architecture of the SUGILITE system, explain the design and implementation of its key features, and show a prototype in the form of a conversational assistant on Android.
We present MixingBoard, a platform for quickly building demos with a focus on knowledge grounded stylized text generation. We unify existing text generation algorithms in a shared codebase and further adapt earlier algorithms for constrained generation. To borrow advantages from different models, we implement strategies for cross-model integration, from the token probability level to the latent space level. An interface to external knowledge is provided via a module that retrieves, on-the-fly, relevant knowledge from passages on the web or a document collection. A user interface for local development, remote webpage access, and a RESTful API are provided to make it simple for users to build their own demos.
As part of the NLP Scholar project, we created a single unified dataset of NLP papers and their meta-information (including citation numbers), by extracting and aligning information from the ACL Anthology and Google Scholar. In this paper, we describe several interconnected interactive visualizations (dashboards) that present various aspects of the data. Clicking on an item within a visualization or entering query terms in the search boxes filters the data in all visualizations in the dashboard. This allows users to search for papers in the area of their interest, published within specific time periods, published by specified authors, etc. The interactive visualizations presented here, and the associated dataset of papers mapped to citations, have additional uses as well including understanding how the field is growing (both overall and across sub-areas), as well as quantifying the impact of different types of papers on subsequent publications.
Building datasets of creative text, such as humor, is quite challenging. We introduce FunLines, a competitive game where players edit news headlines to make them funny, and where they rate the funniness of headlines edited by others. FunLines makes the humor generation process fun, interactive, collaborative, rewarding and educational, keeping players engaged and providing humor data at a very low cost compared to traditional crowdsourcing approaches. FunLines offers useful performance feedback, assisting players in getting better over time at generating and assessing humor, as our analysis shows. This helps to further increase the quality of the generated dataset. We show the effectiveness of this data by training humor classification models that outperform a previous benchmark, and we release this dataset to the public.
The reader of a choose your own adventure novel and the user of a modern virtual assistant have a subtle similarity; both may, through the right lens, be viewed as engaging with a work of Interactive Fiction. This literary form emerged in the 1970s and has grown like a vine along the branch of modern technology, one guided by the advances of the other. In this work we weave together threads from the Interactive Fiction community and neural semantic parsing for dialog systems, defining the data model and necessary algorithms for a novel type of Interactive Fiction and open sourcing its accompanying authoring tool. Specifically, our work integrates retrieval based semantic parsing predicates into the branching story structures well known to the Interactive Fiction community, relaxing the relatively strict lexical options of preexisting systems.
We present a large, tunable neural conversational response generation model, DIALOGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.
We present ADVISER - an open-source, multi-domain dialog system toolkit that enables the development of multi-modal (incorporating speech, text and vision), socially-engaged (e.g. emotion recognition, engagement level prediction and backchanneling) conversational agents. The final Python-based implementation of our toolkit is flexible, easy to use, and easy to extend not only for technically experienced users, such as machine learning researchers, but also for less technically experienced users, such as linguists or cognitive scientists, thereby providing a flexible platform for collaborative research.
Recent events, such as the 2016 US Presidential Campaign, Brexit and the COVID-19 “infodemic”, have brought into the spotlight the dangers of online disinformation. There has been a lot of research focusing on fact-checking and disinformation detection. However, little attention has been paid to the specific rhetorical and psychological techniques used to convey propaganda messages. Revealing the use of such techniques can help promote media literacy and critical thinking, and eventually contribute to limiting the impact of “fake news” and disinformation campaigns. Prta (Propaganda Persuasion Techniques Analyzer) allows users to explore the articles crawled on a regular basis by highlighting the spans in which propaganda techniques occur and to compare them on the basis of their use of propaganda techniques. The system further reports statistics about the use of such techniques, overall and over time, or according to filtering criteria specified by the user based on time interval, keywords, and/or political orientation of the media. Moreover, it allows users to analyze any text or URL through a dedicated interface or via an API. The system is available online: https://www.tanbih.org/prta.
In this paper, we introduce Clinical-Coder, an online system aiming to assign ICD codes to Chinese clinical notes. ICD coding has been a research hotspot of clinical medicine, but the interpretability of prediction hinders its practical application. We exploit a Dilated Convolutional Attention network with N-gram Matching mechanism (DCANM) to capture semantic features for non-continuous words and continuous n-gram words, concentrating on explaining the reason why each ICD code to be predicted. The experiments demonstrate that our approach is effective and that our system is able to provide supporting information in clinical decision making.
We present ESPnet-ST, which is designed for the quick development of speech-to-speech translation systems in a single framework. ESPnet-ST is a new project inside end-to-end speech processing toolkit, ESPnet, which integrates or newly implements automatic speech recognition, machine translation, and text-to-speech functions for speech translation. We provide all-in-one recipes including data pre-processing, feature extraction, training, and decoding pipelines for a wide range of benchmark datasets. Our reproducible results can match or even outperform the current state-of-the-art performances; these pre-trained models are downloadable. The toolkit is publicly available at https://github.com/espnet/espnet.
Abstract Meaning Representation (AMR) (Banarescu et al., 2013) is a framework for semantic dependencies that encodes its rooted and directed acyclic graphs in a format called PENMAN notation. The format is simple enough that users of AMR data often write small scripts or libraries for parsing it into an internal graph representation, but there is enough complexity that these users could benefit from a more sophisticated and well-tested solution. The open-source Python library Penman provides a robust parser, functions for graph inspection and manipulation, and functions for formatting graphs into PENMAN notation. Many functions are also available in a command-line tool, thus extending its utility to non-Python setups.
Each claim in a research paper requires all relevant prior knowledge to be discovered, assimilated, and appropriately cited. However, despite the availability of powerful search engines and sophisticated text editing software, discovering relevant papers and integrating the knowledge into a manuscript remain complex tasks associated with high cognitive load. To define comprehensive search queries requires strong motivation from authors, irrespective of their familiarity with the research field. Moreover, switching between independent applications for literature discovery, bibliography management, reading papers, and writing text burdens authors further and interrupts their creative process. Here, we present a web application that combines text editing and literature discovery in an interactive user interface. The application is equipped with a search engine that couples Boolean keyword filtering with nearest neighbor search over text embeddings, providing a discovery experience tuned to an author’s manuscript and his interests. Our application aims to take a step towards more enjoyable and effortless academic writing. The demo of the application (https://SciEditorDemo2020.herokuapp.com) and a short video tutorial (https://youtu.be/pkdVU60IcRc) are available online.
The shift from traditional translation to post-editing (PE) of machine-translated (MT) text can save time and reduce errors, but it also affects the design of translation interfaces, as the task changes from mainly generating text to correcting errors within otherwise helpful translation proposals. Since this paradigm shift offers potential for modalities other than mouse and keyboard, we present MMPE, the first prototype to combine traditional input modes with pen, touch, and speech modalities for PE of MT. Users can directly cross out or hand-write new text, drag and drop words for reordering, or use spoken commands to update the text in place. All text manipulations are logged in an easily interpretable format to simplify subsequent translation process research. The results of an evaluation with professional translators suggest that pen and touch interaction are suitable for deletion and reordering tasks, while speech and multi-modal combinations of select & speech are considered suitable for replacements and insertions. Overall, experiment participants were enthusiastic about the new modalities and saw them as useful extensions to mouse & keyboard, but not as a complete substitute.
The literature on structured prediction for NLP describes a rich collection of distributions and algorithms over sequences, segmentations, alignments, and trees; however, these algorithms are difficult to utilize in deep learning frameworks. We introduce Torch-Struct, a library for structured prediction designed to take advantage of and integrate with vectorized, auto-differentiation based frameworks. Torch-Struct includes a broad collection of probabilistic structures accessed through a simple and flexible distribution-based API that connects to any deep learning model. The library utilizes batched, vectorized operations and exploits auto-differentiation to produce readable, fast, and testable code. Internally, we also include a number of general-purpose optimizations to provide cross-algorithm efficiency. Experiments show significant performance gains over fast baselines and case-studies demonstrate the benefits of the library. Torch-Struct is available at https://github.com/harvardnlp/pytorch-struct.
Traditionally, industry solutions for building a task-oriented dialog system have relied on helping dialog authors define rule-based dialog managers, represented as dialog flows. While dialog flows are intuitively interpretable and good for simple scenarios, they fall short of performance in terms of the flexibility needed to handle complex dialogs. On the other hand, purely machine-learned models can handle complex dialogs, but they are considered to be black boxes and require large amounts of training data. In this demonstration, we showcase Conversation Learner, a machine teaching tool for building dialog managers. It combines the best of both approaches by enabling dialog authors to create a dialog flow using familiar tools, converting the dialog flow into a parametric model (e.g., neural networks), and allowing dialog authors to improve the dialog manager (i.e., the parametric model) over time by leveraging user-system dialog logs as training data through a machine teaching interface.
Millions of news articles from hundreds of thousands of sources around the globe appear in news aggregators every day. Consuming such a volume of news presents an almost insurmountable challenge. For example, a reader searching on Bloomberg’s system for news about the U.K. would find 10,000 articles on a typical day. Apple Inc., the world’s most journalistically covered company, garners around 1,800 news articles a day. We realized that a new kind of summarization engine was needed, one that would condense large volumes of news into short, easy to absorb points. The system would filter out noise and duplicates to identify and summarize key news about companies, countries or markets. When given a user query, Bloomberg’s solution, Key News Themes (or NSTM), leverages state-of-the-art semantic clustering techniques and novel summarization methods to produce comprehensive, yet concise, digests to dramatically simplify the news consumption process. NSTM is available to hundreds of thousands of readers around the world and serves thousands of requests daily with sub-second latency. At ACL 2020, we will present a demo of NSTM.
Dietary supplements are used by a large portion of the population, but information on their pharmacologic interactions is incomplete. To address this challenge, we present SUPP.AI, an application for browsing evidence of supplement-drug interactions (SDIs) extracted from the biomedical literature. We train a model to automatically extract supplement information and identify such interactions from the scientific literature. To address the lack of labeled data for SDI identification, we use labels of the closely related task of identifying drug-drug interactions (DDIs) for supervision. We fine-tune the contextualized word representations of the RoBERTa language model using labeled DDI data, and apply the fine-tuned model to identify supplement interactions. We extract 195k evidence sentences from 22M articles (P=0.82, R=0.58, F1=0.68) for 60k interactions. We create the SUPP.AI application for users to search evidence sentences extracted by our model. SUPP.AI is an attempt to close the information gap on dietary supplements by making up-to-date evidence on SDIs more discoverable for researchers, clinicians, and consumers. An informational video on how to use SUPP.AI is available at: https://youtu.be/dR0ucKdORwc
Successfully training a deep neural network demands a huge corpus of labeled data. However, each label only provides limited information to learn from, and collecting the requisite number of labels involves massive human effort. In this work, we introduce LEAN-LIFE, a web-based, Label-Efficient AnnotatioN framework for sequence labeling and classification tasks, with an easy-to-use UI that not only allows an annotator to provide the needed labels for a task but also enables LearnIng From Explanations for each labeling decision. Such explanations enable us to generate useful additional labeled data from unlabeled instances, bolstering the pool of available training data. On three popular NLP tasks (named entity recognition, relation extraction, sentiment analysis), we find that using this enhanced supervision allows our models to surpass competitive baseline F1 scores by more than 5-10 percentage points, while using 2X times fewer labeled instances. Our framework is the first to utilize this enhanced supervision technique and does so for three important tasks – thus providing improved annotation recommendations to users and an ability to build datasets of (data, label, explanation) triples instead of the regular (data, label) pair.
This work describes an automatic news chatbot that draws content from a diverse set of news articles and creates conversations with a user about the news. Key components of the system include the automatic organization of news articles into topical chatrooms, integration of automatically generated questions into the conversation, and a novel method for choosing which questions to present which avoids repetitive suggestions. We describe the algorithmic framework and present the results of a usability study that shows that news readers using the system successfully engage in multi-turn conversations about specific news stories.