Idioms are a kind of idiomatic expression in Chinese, most of which consist of four Chinese characters. Due to the properties of non-compositionality and metaphorical meaning, Chinese idioms are hard to be understood by children and non-native speakers. This study proposes a novel task, denoted as Chinese Idiom Paraphrasing (CIP). CIP aims to rephrase idiom-containing sentences to non-idiomatic ones under the premise of preserving the original sentence’s meaning. Since the sentences without idioms are more easily handled by Chinese NLP systems, CIP can be used to pre-process Chinese datasets, thereby facilitating and improving the performance of Chinese NLP tasks, e.g., machine translation systems, Chinese idiom cloze, and Chinese idiom embeddings. In this study, we can treat the CIP task as a special paraphrase generation task. To circumvent difficulties in acquiring annotations, we first establish a large-scale CIP dataset based on human and machine collaboration, which consists of 115,529 sentence pairs. In addition to three sequence-to-sequence methods as the baselines, we further propose a novel infill-based approach based on text infilling. The results show that the proposed method has better performance than the baselines based on the established CIP dataset.
Existing lexical substitution (LS) benchmarks were collected by asking human annotators to think of substitutes from memory, resulting in benchmarks with limited coverage and relatively small scales. To overcome this problem, we propose a novel annotation method to construct an LS dataset based on human and machine collaboration. Based on our annotation method, we construct the first Chinese LS dataset CHNLS which consists of 33,695 instances and 144,708 substitutes, covering three text genres (News, Novel, and Wikipedia). Specifically, we first combine four unsupervised LS methods as an ensemble method to generate the candidate substitutes, and then let human annotators judge these candidates or add new ones. This collaborative process combines the diversity of machine-generated substitutes with the expertise of human annotators. Experimental results that the ensemble method outperforms other LS methods. To our best knowledge, this is the first study for the Chinese LS task.
It has been commonly observed that a teacher model with superior performance does not necessarily result in a stronger student, highlighting a discrepancy between current teacher training practices and effective knowledge transfer. In order to enhance the guidance of the teacher training process, we introduce the concept of distillation influence to determine the impact of distillation from each training sample on the student’s generalization ability. In this paper, we propose Learning Good Teacher Matters (LGTM), an efficient training technique for incorporating distillation influence into the teacher’s learning process. By prioritizing samples that are likely to enhance the student’s generalization ability, our LGTM outperforms 10 common knowledge distillation baselines on 6 text classification tasks in the GLUE benchmark.
Lexical substitution (LS) aims at finding appropriate substitutes for a target word in a sentence. Recently, LS methods based on pretrained language models have made remarkable progress, generating potential substitutes for a target word through analysis of its contextual surroundings. However, these methods tend to overlook the preservation of the sentence’s meaning when generating the substitutes. This study explores how to generate the substitute candidates from a paraphraser, as the generated paraphrases from a paraphraser contain variations in word choice and preserve the sentence’s meaning. Since we cannot directly generate the substitutes via commonly used decoding strategies, we propose two simple decoding strategies that focus on the variations of the target word during decoding. Experimental results show that our methods outperform state-of-the-art LS methods based on pre-trained language models on three benchmarks.
Conventional visual relationship detection models only use the numeric ids of relation labels for training, but ignore the semantic correlation between the labels, which leads to severe training biases and harms the generalization ability of representations. In this paper, we introduce compact language information of relation labels for regularizing the representation learning of visual relations. Specifically, we propose a simple yet effective visual Relationship prediction framework that transfers natural language knowledge learned from Contrastive Language-Image Pre-training (CLIP) models to enhance the relationship prediction, termed RelCLIP. Benefiting from the powerful visual-semantic alignment ability of CLIP at image level, we introduce a novel Relational Contrastive Learning (RCL) approach which explores relation-level visual-semantic alignment via learning to match cross-modal relational embeddings. By collaboratively learning the semantic coherence and discrepancy from relation triplets, the model can generate more discriminative and robust representations. Experimental results on the Visual Genome dataset show that RelCLIP achieves significant improvements over strong baselines under full (provide accurate labels) and distant supervision (provide noise labels), demonstrating its powerful generalization ability in learning relationship representations. Code will be available at https://gitee.com/mindspore/models/tree/master/research/cv/RelCLIP.
Semi-supervised learning through deep generative models and multi-lingual pretraining techniques have orchestrated tremendous success across different areas of NLP. Nonetheless, their development has happened in isolation, while the combination of both could potentially be effective for tackling task-specific labelled data shortage. To bridge this gap, we combine semi-supervised deep generative models and multi-lingual pretraining to form a pipeline for document classification task. Compared to strong supervised learning baselines, our semi-supervised classification framework is highly competitive and outperforms the state-of-the-art counterparts in low-resource settings across several languages.
Few-shot crosslingual transfer has been shown to outperform its zero-shot counterpart with pretrained encoders like multilingual BERT. Despite its growing popularity, little to no attention has been paid to standardizing and analyzing the design of few-shot experiments. In this work, we highlight a fundamental risk posed by this shortcoming, illustrating that the model exhibits a high degree of sensitivity to the selection of few shots. We conduct a large-scale experimental study on 40 sets of sampled few shots for six diverse NLP tasks across up to 40 languages. We provide an analysis of success and failure cases of few-shot transfer, which highlights the role of lexical features. Additionally, we show that a straightforward full model finetuning approach is quite effective for few-shot transfer, outperforming several state-of-the-art few-shot approaches. As a step towards standardizing few-shot crosslingual experimental designs, we make our sampled few shots publicly available.
The availability of parallel sentence simplification (SS) is scarce for neural SS modelings. We propose an unsupervised method to build SS corpora from large-scale bilingual translation corpora, alleviating the need for SS supervised corpora. Our method is motivated by the following two findings: neural machine translation model usually tends to generate more high-frequency tokens and the difference of text complexity levels exists between the source and target language of a translation corpus. By taking the pair of the source sentences of translation corpus and the translations of their references in a bridge language, we can construct large-scale pseudo parallel SS data. Then, we keep these sentence pairs with a higher complexity difference as SS sentence pairs. The building SS corpora with an unsupervised approach can satisfy the expectations that the aligned sentences preserve the same meanings and have difference in text complexity levels. Experimental results show that SS methods trained by our corpora achieve the state-of-the-art results and significantly outperform the results on English benchmark WikiLarge.
Recent work has validated the importance of subword information for word representation learning. Since subwords increase parameter sharing ability in neural models, their value should be even more pronounced in low-data regimes. In this work, we therefore provide a comprehensive analysis focused on the usefulness of subwords for word representation learning in truly low-resource scenarios and for three representative morphological tasks: fine-grained entity typing, morphological tagging, and named entity recognition. We conduct a systematic study that spans several dimensions of comparison: 1) type of data scarcity which can stem from the lack of task-specific training data, or even from the lack of unannotated data required to train word embeddings, or both; 2) language type by working with a sample of 16 typologically diverse languages including some truly low-resource ones (e.g. Rusyn, Buryat, and Zulu); 3) the choice of the subword-informed word representation method. Our main results show that subword-informed models are universally useful across all language types, with large gains over subword-agnostic embeddings. They also suggest that the effective use of subwords largely depends on the language (type) and the task at hand, as well as on the amount of available data for training the embeddings and task-based models, where having sufficient in-task data is a more critical requirement.
The use of subword-level information (e.g., characters, character n-grams, morphemes) has become ubiquitous in modern word representation learning. Its importance is attested especially for morphologically rich languages which generate a large number of rare words. Despite a steadily increasing interest in such subword-informed word representations, their systematic comparative analysis across typologically diverse languages and different tasks is still missing. In this work, we deliver such a study focusing on the variation of two crucial components required for subword-level integration into word representation models: 1) segmentation of words into subword units, and 2) subword composition functions to obtain final word representations. We propose a general framework for learning subword-informed word representations that allows for easy experimentation with different segmentation and composition components, also including more advanced techniques based on position embeddings and self-attention. Using the unified framework, we run experiments over a large number of subword-informed word representation configurations (60 in total) on 3 tasks (general and rare word similarity, dependency parsing, fine-grained entity typing) for 5 languages representing 3 language types. Our main results clearly indicate that there is no “one-size-fits-all” configuration, as performance is both language- and task-dependent. We also show that configurations based on unsupervised segmentation (e.g., BPE, Morfessor) are sometimes comparable to or even outperform the ones based on supervised word segmentation.
While neural dependency parsers provide state-of-the-art accuracy for several languages, they still rely on large amounts of costly labeled training data. We demonstrate that in the small data regime, where uncertainty around parameter estimation and model prediction matters the most, Bayesian neural modeling is very effective. In order to overcome the computational and statistical costs of the approximate inference step in this framework, we utilize an efficient sampling procedure via stochastic gradient Langevin dynamics to generate samples from the approximated posterior. Moreover, we show that our Bayesian neural parser can be further improved when integrated into a multi-task parsing and POS tagging framework, designed to minimize task interference via an adversarial procedure. When trained and tested on 6 languages with less than 5k training instances, our parser consistently outperforms the strong bilstm baseline (Kiperwasser and Goldberg, 2016). Compared with the biaffine parser (Dozat et al., 2017) our model achieves an improvement of up to 3% for Vietnames and Irish, while our multi-task model achieves an improvement of up to 9% across five languages: Farsi, Russian, Turkish, Vietnamese, and Irish.
We study the problem of analyzing tweets with universal dependencies (UD). We extend the UD guidelines to cover special constructions in tweets that affect tokenization, part-of-speech tagging, and labeled dependencies. Using the extended guidelines, we create a new tweet treebank for English (Tweebank v2) that is four times larger than the (unlabeled) Tweebank v1 introduced by Kong et al. (2014). We characterize the disagreements between our annotators and show that it is challenging to deliver consistent annotation due to ambiguity in understanding and explaining tweets. Nonetheless, using the new treebank, we build a pipeline system to parse raw tweets into UD. To overcome the annotation noise without sacrificing computational efficiency, we propose a new method to distill an ensemble of 20 transition-based parsers into a single one. Our parser achieves an improvement of 2.2 in LAS over the un-ensembled baseline and outperforms parsers that are state-of-the-art on other treebanks in both accuracy and speed.