Continual Named Entity Recognition (CNER) is a burgeoning area, which involves updating an existing model by incorporating new entity types sequentially. Nevertheless, continual learning approaches are often severely afflicted by catastrophic forgetting. This issue is intensified in CNER due to the consolidation of old entity types from previous steps into the non-entity type at each step, leading to what is known as the semantic shift problem of the non-entity type. In this paper, we introduce a pooled feature distillation loss that skillfully navigates the trade-off between retaining knowledge of old entity types and acquiring new ones, thereby more effectively mitigating the problem of catastrophic forgetting. Additionally, we develop a confidence-based pseudo-labeling for the non-entity type, i.e., predicting entity types using the old model to handle the semantic shift of the non-entity type. Following the pseudo-labeling process, we suggest an adaptive re-weighting type-balanced learning strategy to handle the issue of biased type distribution. We carried out comprehensive experiments on ten CNER settings using three different datasets. The results illustrate that our method significantly outperforms prior state-of-the-art approaches, registering an average improvement of 6.3% and 8.0% in Micro and Macro F1 scores, respectively.
Capturing complex contextual dependencies plays a vital role in Emotion Recognition in Conversations (ERC). Previous studies have predominantly focused on speaker-aware context modeling, overlooking the discourse structure of the conversation. In this paper, we introduce Dual Graph ATtention networks (DualGATs) to concurrently consider the complementary aspects of discourse structure and speaker-aware context, aiming for more precise ERC. Specifically, we devise a Discourse-aware GAT (DisGAT) module to incorporate discourse structural information by analyzing the discourse dependencies between utterances. Additionally, we develop a Speaker-aware GAT (SpkGAT) module to incorporate speaker-aware contextual information by considering the speaker dependencies between utterances. Furthermore, we design an interaction module that facilitates the integration of the DisGAT and SpkGAT modules, enabling the effective interchange of relevant information between the two modules. We extensively evaluate our method on four datasets, and experimental results demonstrate that our proposed DualGATs surpass state-of-the-art baselines on the majority of the datasets.
Causal Emotion Entailment (CEE) aims to discover the potential causes behind an emotion in a conversational utterance. Previous works formalize CEE as independent utterance pair classification problems, with emotion and speaker information neglected. From a new perspective, this paper considers CEE in a joint framework. We classify multiple utterances synchronously to capture the correlations between utterances in a global view and propose a Two-Stream Attention Model (TSAM) to effectively model the speaker’s emotional influences in the conversational history. Specifically, the TSAM comprises three modules: Emotion Attention Network (EAN), Speaker Attention Network (SAN), and interaction module. The EAN and SAN incorporate emotion and speaker information in parallel, and the subsequent interaction module effectively interchanges relevant information between the EAN and SAN via a mutual BiAffine transformation. Extensive experimental results demonstrate that our model achieves new State-Of-The-Art (SOTA) performance and outperforms baselines remarkably.
Visual dialog is challenging since it needs to answer a series of coherent questions based on understanding the visual environment. How to ground related visual objects is one of the key problems. Previous studies utilize the question and history to attend to the image and achieve satisfactory performance, while these methods are not sufficient to locate related visual objects without any guidance. The inappropriate grounding of visual objects prohibits the performance of visual dialog models. In this paper, we propose a novel approach to Learn to Ground visual objects for visual dialog, which employs a novel visual objects grounding mechanism where both prior and posterior distributions over visual objects are used to facilitate visual objects grounding. Specifically, a posterior distribution over visual objects is inferred from both context (history and questions) and answers, and it ensures the appropriate grounding of visual objects during the training process. Meanwhile, a prior distribution, which is inferred from context only, is used to approximate the posterior distribution so that appropriate visual objects can be grounding even without answers during the inference process. Experimental results on the VisDial v0.9 and v1.0 datasets demonstrate that our approach improves the previous strong models in both generative and discriminative settings by a significant margin.
Emotion recognition in textual conversations (ERTC) plays an important role in a wide range of applications, such as opinion mining, recommender systems, and so on. ERTC, however, is a challenging task. For one thing, speakers often rely on the context and commonsense knowledge to express emotions; for another, most utterances contain neutral emotion in conversations, as a result, the confusion between a few non-neutral utterances and much more neutral ones restrains the emotion recognition performance. In this paper, we propose a novel Knowledge Aware Incremental Transformer with Multi-task Learning (KAITML) to address these challenges. Firstly, we devise a dual-level graph attention mechanism to leverage commonsense knowledge, which augments the semantic information of the utterance. Then we apply the Incremental Transformer to encode multi-turn contextual utterances. Moreover, we are the first to introduce multi-task learning to alleviate the aforementioned confusion and thus further improve the emotion recognition performance. Extensive experimental results show that our KAITML model outperforms the state-of-the-art models across five benchmark datasets.
Knowledge selection plays an important role in knowledge-grounded dialogue, which is a challenging task to generate more informative responses by leveraging external knowledge. Recently, latent variable models have been proposed to deal with the diversity of knowledge selection by using both prior and posterior distributions over knowledge and achieve promising performance. However, these models suffer from a huge gap between prior and posterior knowledge selection. Firstly, the prior selection module may not learn to select knowledge properly because of lacking the necessary posterior information. Secondly, latent variable models suffer from the exposure bias that dialogue generation is based on the knowledge selected from the posterior distribution at training but from the prior distribution at inference. Here, we deal with these issues on two aspects: (1) We enhance the prior selection module with the necessary posterior information obtained from the specially designed Posterior Information Prediction Module (PIPM); (2) We propose a Knowledge Distillation Based Training Strategy (KDBTS) to train the decoder with the knowledge selected from the prior distribution, removing the exposure bias of knowledge selection. Experimental results on two knowledge-grounded dialogue datasets show that both PIPM and KDBTS achieve performance improvement over the state-of-the-art latent variable model and their combination shows further improvement.
Recently, to incorporate external Knowledge Base (KB) information, one form of world knowledge, several end-to-end task-oriented dialog systems have been proposed. These models, however, tend to confound the dialog history with KB tuples and simply store them into one memory. Inspired by the psychological studies on working memory, we propose a working memory model (WMM2Seq) for dialog response generation. Our WMM2Seq adopts a working memory to interact with two separated long-term memories, which are the episodic memory for memorizing dialog history and the semantic memory for storing KB tuples. The working memory consists of a central executive to attend to the aforementioned memories, and a short-term storage system to store the “activated” contents from the long-term memories. Furthermore, we introduce a context-sensitive perceptual process for the token representations of dialog history, and then feed them into the episodic memory. Extensive experiments on two task-oriented dialog datasets demonstrate that our WMM2Seq significantly outperforms the state-of-the-art results in several evaluation metrics.