Reinforcement learning from human feedback serves as a crucial bridge, aligning large language models with human and societal values. This alignment requires a vast corpus of human feedback to learn a reward model, which is subsequently used to finetune language models. However, we have identified that the reward model often finds shortcuts to bypass its intended objectives, misleadingly assuming that humans prefer longer responses. The emergence of length bias often induces the model to favor longer outputs, yet it doesn’t equate to an increase in helpful information within these outputs. In this paper, we propose an innovative solution, applying the Product-of-Experts (PoE) technique to separate reward modeling from the influence of sequence length. In our framework, the main expert concentrates on understanding human intents, while the biased expert targets the identification and capture of length bias. To further enhance the learning of bias, we introduce perturbations into the bias-focused expert, disrupting the flow of semantic information. Experimental results validate the effectiveness of our approach, indicating that language model performance is improved, irrespective of sequence length.
The growing popularity of conversational AI agents such as Alexa, Google Assistant, and Siri rely on accurate spoken language comprehension. The query reformulation (QR) method, which reformulates defective user queries, has been broadly adopted to mitigate the challenges posed by understanding user’s intent from imperfect spoken recognition result. However, due to the scarcity of non-English QR labels, providing high-quality QR for non-English users still remains a challenge. This work proposes a novel cross-lingual QR framework, CL-QR, to leverage the abundant reformulation resources in English to improve non-English QR performance. The proposed work also proposes a Module-wise Mutually-supervised Feedback learning (MMF) algorithm to enable the continually self-improving of the CL-QR, which alleviates the lack of cross-lingual QR training data and enhances the delivery of high-quality reformulations learned in English for multilingual queries. Both offline evaluation and online A/B testing demonstrates the effectiveness of the proposed method.
Contextual query rewriting (CQR) is a crucial component in Conversational AI agents, leveraging the contextual information from previous user-agent conversations to improve the comprehension of current user intent. However, traditional CQR methods often concentrate on supervised fine-tuning only, neglecting the opportunities to learn from user feedback to align with user preferences. Inspired by recent advances in learning from human feedback (LHF), this paper proposes a novel Preference Aligned Contextual Query Rewriting (PA-CQR) framework to enhance the CQR model’s capability in generating user preference-aligned rewrites. This paper also investigates the efficacy of various state-of-the-art feedback learning algorithms on the CQR task, and proposes a novel Dynamic Direct Preference Optimization (Dynamic DPO) algorithm to better adapt the DPO algorithm to large-scale CQR training. Experiments on large-scale real-world CQR data set demonstrate the superiority of the proposed PA-CQR framework and the Dynamic DPO.
Large-scale pre-trained language models have attracted extensive attentions in the research community and shown promising results on various tasks of natural language processing. However, the attention maps, which record the attention scores between tokens in self-attention mechanism, are sometimes ineffective as they are learned implicitly without the guidance of explicit semantic knowledge. Thus, we aim to infuse explicit external knowledge into pre-trained language models to further boost their performance. Existing works of knowledge infusion largely depend on multi-task learning frameworks, which are inefficient and require large-scale re-training when new knowledge is considered. In this paper, we propose a novel and generic solution, KAM-BERT, which directly incorporates knowledge-generated attention maps into the self-attention mechanism. It requires only a few extra parameters and supports efficient fine-tuning once new knowledge is added. KAM-BERT achieves consistent improvements on various academic datasets for natural language understanding. It also outperforms other state-of-the-art methods which conduct knowledge infusion into transformer-based architectures. Moreover, we apply our model to an industry-scale ad relevance application and show its advantages in the real-world scenario.