Uroš Stepišnik


2020

pdf
Mining Semantic Relations from Comparable Corpora through Intersections of Word Embeddings
Špela Vintar | Larisa Grčić Simeunović | Matej Martinc | Senja Pollak | Uroš Stepišnik
Proceedings of the 13th Workshop on Building and Using Comparable Corpora

We report an experiment aimed at extracting words expressing a specific semantic relation using intersections of word embeddings. In a multilingual frame-based domain model, specific features of a concept are typically described through a set of non-arbitrary semantic relations. In karstology, our domain of choice which we are exploring though a comparable corpus in English and Croatian, karst phenomena such as landforms are usually described through their FORM, LOCATION, CAUSE, FUNCTION and COMPOSITION. We propose an approach to mine words pertaining to each of these relations by using a small number of seed adjectives, for which we retrieve closest words using word embeddings and then use intersections of these neighbourhoods to refine our search. Such cross-language expansion of semantically-rich vocabulary is a valuable aid in improving the coverage of a multilingual knowledge base, but also in exploring differences between languages in their respective conceptualisations of the domain.

pdf
The NetViz terminology visualization tool and the use cases in karstology domain modeling
Senja Pollak | Vid Podpečan | Dragana Miljkovic | Uroš Stepišnik | Špela Vintar
Proceedings of the 6th International Workshop on Computational Terminology

We present the NetViz terminology visualization tool and apply it to the domain modeling of karstology, a subfield of geography studying karst phenomena. The developed tool allows for high-performance online network visualization where the user can upload the terminological data in a simple CSV format, define the nodes (terms, categories), edges (relations) and their properties (by assigning different node colors), and then edit and interactively explore domain knowledge in the form of a network. We showcase the usefulness of the tool on examples from the karstology domain, where in the first use case we visualize the domain knowledge as represented in a manually annotated corpus of domain definitions, while in the second use case we show the power of visualization for domain understanding by visualizing automatically extracted knowledge in the form of triplets extracted from the karstology domain corpus. The application is entirely web-based without any need for downloading or special configuration. The source code of the web application is also available under the permissive MIT license, allowing future extensions for developing new terminological applications.