Tsung-Hsien Wen


2022

pdf
Multi-Label Intent Detection via Contrastive Task Specialization of Sentence Encoders
Ivan Vulić | Iñigo Casanueva | Georgios Spithourakis | Avishek Mondal | Tsung-Hsien Wen | Paweł Budzianowski
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Deploying task-oriented dialog ToD systems for new domains and tasks requires natural language understanding models that are 1) resource-efficient and work under low-data regimes; 2) adaptable, efficient, and quick-to-train; 3) expressive and can handle complex ToD scenarios with multiple user intents in a single utterance. Motivated by these requirements, we introduce a novel framework for multi-label intent detection (mID): MultI-ConvFiT (Multi-Label Intent Detection via Contrastive Conversational Fine-Tuning). While previous work on efficient single-label intent detection learns a classifier on top of a fixed sentence encoder (SE), we propose to 1) transform general-purpose SEs into task-specialized SEs via contrastive fine-tuning on annotated multi-label data, 2) where task specialization knowledge can be stored into lightweight adapter modules without updating the original parameters of the input SE, and then 3) we build improved mID classifiers stacked on top of fixed specialized SEs. Our main results indicate that MultI-ConvFiT yields effective mID models, with large gains over non-specialized SEs reported across a spectrum of different mID datasets, both in low-data and high-data regimes.

2021

pdf
ConvFiT: Conversational Fine-Tuning of Pretrained Language Models
Ivan Vulić | Pei-Hao Su | Samuel Coope | Daniela Gerz | Paweł Budzianowski | Iñigo Casanueva | Nikola Mrkšić | Tsung-Hsien Wen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transformer-based language models (LMs) pretrained on large text collections are proven to store a wealth of semantic knowledge. However, 1) they are not effective as sentence encoders when used off-the-shelf, and 2) thus typically lag behind conversationally pretrained (e.g., via response selection) encoders on conversational tasks such as intent detection (ID). In this work, we propose ConvFiT, a simple and efficient two-stage procedure which turns any pretrained LM into a universal conversational encoder (after Stage 1 ConvFiT-ing) and task-specialised sentence encoder (after Stage 2). We demonstrate that 1) full-blown conversational pretraining is not required, and that LMs can be quickly transformed into effective conversational encoders with much smaller amounts of unannotated data; 2) pretrained LMs can be fine-tuned into task-specialised sentence encoders, optimised for the fine-grained semantics of a particular task. Consequently, such specialised sentence encoders allow for treating ID as a simple semantic similarity task based on interpretable nearest neighbours retrieval. We validate the robustness and versatility of the ConvFiT framework with such similarity-based inference on the standard ID evaluation sets: ConvFiT-ed LMs achieve state-of-the-art ID performance across the board, with particular gains in the most challenging, few-shot setups.

pdf
Multilingual and Cross-Lingual Intent Detection from Spoken Data
Daniela Gerz | Pei-Hao Su | Razvan Kusztos | Avishek Mondal | Michał Lis | Eshan Singhal | Nikola Mrkšić | Tsung-Hsien Wen | Ivan Vulić
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We present a systematic study on multilingual and cross-lingual intent detection (ID) from spoken data. The study leverages a new resource put forth in this work, termed MInDS-14, a first training and evaluation resource for the ID task with spoken data. It covers 14 intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties. Our key results indicate that combining machine translation models with state-of-the-art multilingual sentence encoders (e.g., LaBSE) yield strong intent detectors in the majority of target languages covered in MInDS-14, and offer comparative analyses across different axes: e.g., translation direction, impact of speech recognition, data augmentation from a related domain. We see this work as an important step towards more inclusive development and evaluation of multilingual ID from spoken data, hopefully in a much wider spectrum of languages compared to prior work.

2020

pdf bib
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
Asli Celikyilmaz | Tsung-Hsien Wen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

pdf
ConveRT: Efficient and Accurate Conversational Representations from Transformers
Matthew Henderson | Iñigo Casanueva | Nikola Mrkšić | Pei-Hao Su | Tsung-Hsien Wen | Ivan Vulić
Findings of the Association for Computational Linguistics: EMNLP 2020

General-purpose pretrained sentence encoders such as BERT are not ideal for real-world conversational AI applications; they are computationally heavy, slow, and expensive to train. We propose ConveRT (Conversational Representations from Transformers), a pretraining framework for conversational tasks satisfying all the following requirements: it is effective, affordable, and quick to train. We pretrain using a retrieval-based response selection task, effectively leveraging quantization and subword-level parameterization in the dual encoder to build a lightweight memory- and energy-efficient model. We show that ConveRT achieves state-of-the-art performance across widely established response selection tasks. We also demonstrate that the use of extended dialog history as context yields further performance gains. Finally, we show that pretrained representations from the proposed encoder can be transferred to the intent classification task, yielding strong results across three diverse data sets. ConveRT trains substantially faster than standard sentence encoders or previous state-of-the-art dual encoders. With its reduced size and superior performance, we believe this model promises wider portability and scalability for Conversational AI applications.

pdf bib
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI
Tsung-Hsien Wen | Asli Celikyilmaz | Zhou Yu | Alexandros Papangelis | Mihail Eric | Anuj Kumar | Iñigo Casanueva | Rushin Shah
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI

2019

pdf bib
Proceedings of the First Workshop on NLP for Conversational AI
Yun-Nung Chen | Tania Bedrax-Weiss | Dilek Hakkani-Tur | Anuj Kumar | Mike Lewis | Thang-Minh Luong | Pei-Hao Su | Tsung-Hsien Wen
Proceedings of the First Workshop on NLP for Conversational AI

pdf bib
A Repository of Conversational Datasets
Matthew Henderson | Paweł Budzianowski | Iñigo Casanueva | Sam Coope | Daniela Gerz | Girish Kumar | Nikola Mrkšić | Georgios Spithourakis | Pei-Hao Su | Ivan Vulić | Tsung-Hsien Wen
Proceedings of the First Workshop on NLP for Conversational AI

Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using 1-of-100 accuracy. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set.

pdf
Training Neural Response Selection for Task-Oriented Dialogue Systems
Matthew Henderson | Ivan Vulić | Daniela Gerz | Iñigo Casanueva | Paweł Budzianowski | Sam Coope | Georgios Spithourakis | Tsung-Hsien Wen | Nikola Mrkšić | Pei-Hao Su
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Despite their popularity in the chatbot literature, retrieval-based models have had modest impact on task-oriented dialogue systems, with the main obstacle to their application being the low-data regime of most task-oriented dialogue tasks. Inspired by the recent success of pretraining in language modelling, we propose an effective method for deploying response selection in task-oriented dialogue. To train response selection models for task-oriented dialogue tasks, we propose a novel method which: 1) pretrains the response selection model on large general-domain conversational corpora; and then 2) fine-tunes the pretrained model for the target dialogue domain, relying only on the small in-domain dataset to capture the nuances of the given dialogue domain. Our evaluation on five diverse application domains, ranging from e-commerce to banking, demonstrates the effectiveness of the proposed training method.

bib
Data Collection and End-to-End Learning for Conversational AI
Tsung-Hsien Wen | Pei-Hao Su | Paweł Budzianowski | Iñigo Casanueva | Ivan Vulić
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts

A fundamental long-term goal of conversational AI is to merge two main dialogue system paradigms into a standalone multi-purpose system. Such a system should be capable of conversing about arbitrary topics (Paradigm 1: open-domain dialogue systems), and simultaneously assist humans with completing a wide range of tasks with well-defined semantics such as restaurant search and booking, customer service applications, or ticket bookings (Paradigm 2: task-based dialogue systems).The recent developmental leaps in conversational AI technology are undoubtedly linked to more and more sophisticated deep learning algorithms that capture patterns in increasing amounts of data generated by various data collection mechanisms. The goal of this tutorial is therefore twofold. First, it aims at familiarising the research community with the recent advances in algorithmic design of statistical dialogue systems for both open-domain and task-based dialogue paradigms. The focus of the tutorial is on recently introduced end-to-end learning for dialogue systems and their relation to more common modular systems. In theory, learning end-to-end from data offers seamless and unprecedented portability of dialogue systems to a wide spectrum of tasks and languages. From a practical point of view, there are still plenty of research challenges and opportunities remaining: in this tutorial we analyse this gap between theory and practice, and introduce the research community with the main advantages as well as with key practical limitations of current end-to-end dialogue learning.The critical requirement of each statistical dialogue system is the data at hand. The system cannot provide assistance for the task without having appropriate task-related data to learn from. Therefore, the second major goal of this tutorial is to provide a comprehensive overview of the current approaches to data collection for dialogue, and analyse the current gaps and challenges with diverse data collection protocols, as well as their relation to and current limitations of data-driven end-to-end dialogue modeling. We will again analyse this relation and limitations both from research and industry perspective, and provide key insights on the application of state-of-the-art methodology into industry-scale conversational AI systems.

pdf
PolyResponse: A Rank-based Approach to Task-Oriented Dialogue with Application in Restaurant Search and Booking
Matthew Henderson | Ivan Vulić | Iñigo Casanueva | Paweł Budzianowski | Daniela Gerz | Sam Coope | Georgios Spithourakis | Tsung-Hsien Wen | Nikola Mrkšić | Pei-Hao Su
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

We present PolyResponse, a conversational search engine that supports task-oriented dialogue. It is a retrieval-based approach that bypasses the complex multi-component design of traditional task-oriented dialogue systems and the use of explicit semantics in the form of task-specific ontologies. The PolyResponse engine is trained on hundreds of millions of examples extracted from real conversations: it learns what responses are appropriate in different conversational contexts. It then ranks a large index of text and visual responses according to their similarity to the given context, and narrows down the list of relevant entities during the multi-turn conversation. We introduce a restaurant search and booking system powered by the PolyResponse engine, currently available in 8 different languages.

2018

pdf
MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
Paweł Budzianowski | Tsung-Hsien Wen | Bo-Hsiang Tseng | Iñigo Casanueva | Stefan Ultes | Osman Ramadan | Milica Gašić
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Even though machine learning has become the major scene in dialogue research community, the real breakthrough has been blocked by the scale of data available. To address this fundamental obstacle, we introduce the Multi-Domain Wizard-of-Oz dataset (MultiWOZ), a fully-labeled collection of human-human written conversations spanning over multiple domains and topics. At a size of 10k dialogues, it is at least one order of magnitude larger than all previous annotated task-oriented corpora. The contribution of this work apart from the open-sourced dataset is two-fold:firstly, a detailed description of the data collection procedure along with a summary of data structure and analysis is provided. The proposed data-collection pipeline is entirely based on crowd-sourcing without the need of hiring professional annotators;secondly, a set of benchmark results of belief tracking, dialogue act and response generation is reported, which shows the usability of the data and sets a baseline for future studies.

2017

pdf
A Network-based End-to-End Trainable Task-oriented Dialogue System
Tsung-Hsien Wen | David Vandyke | Nikola Mrkšić | Milica Gašić | Lina M. Rojas-Barahona | Pei-Hao Su | Stefan Ultes | Steve Young
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Teaching machines to accomplish tasks by conversing naturally with humans is challenging. Currently, developing task-oriented dialogue systems requires creating multiple components and typically this involves either a large amount of handcrafting, or acquiring costly labelled datasets to solve a statistical learning problem for each component. In this work we introduce a neural network-based text-in, text-out end-to-end trainable goal-oriented dialogue system along with a new way of collecting dialogue data based on a novel pipe-lined Wizard-of-Oz framework. This approach allows us to develop dialogue systems easily and without making too many assumptions about the task at hand. The results show that the model can converse with human subjects naturally whilst helping them to accomplish tasks in a restaurant search domain.

pdf
Reward-Balancing for Statistical Spoken Dialogue Systems using Multi-objective Reinforcement Learning
Stefan Ultes | Paweł Budzianowski | Iñigo Casanueva | Nikola Mrkšić | Lina M. Rojas-Barahona | Pei-Hao Su | Tsung-Hsien Wen | Milica Gašić | Steve Young
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

Reinforcement learning is widely used for dialogue policy optimization where the reward function often consists of more than one component, e.g., the dialogue success and the dialogue length. In this work, we propose a structured method for finding a good balance between these components by searching for the optimal reward component weighting. To render this search feasible, we use multi-objective reinforcement learning to significantly reduce the number of training dialogues required. We apply our proposed method to find optimized component weights for six domains and compare them to a default baseline.

pdf
Sub-domain Modelling for Dialogue Management with Hierarchical Reinforcement Learning
Paweł Budzianowski | Stefan Ultes | Pei-Hao Su | Nikola Mrkšić | Tsung-Hsien Wen | Iñigo Casanueva | Lina M. Rojas-Barahona | Milica Gašić
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

Human conversation is inherently complex, often spanning many different topics/domains. This makes policy learning for dialogue systems very challenging. Standard flat reinforcement learning methods do not provide an efficient framework for modelling such dialogues. In this paper, we focus on the under-explored problem of multi-domain dialogue management. First, we propose a new method for hierarchical reinforcement learning using the option framework. Next, we show that the proposed architecture learns faster and arrives at a better policy than the existing flat ones do. Moreover, we show how pretrained policies can be adapted to more complex systems with an additional set of new actions. In doing that, we show that our approach has the potential to facilitate policy optimisation for more sophisticated multi-domain dialogue systems.

pdf
Neural Belief Tracker: Data-Driven Dialogue State Tracking
Nikola Mrkšić | Diarmuid Ó Séaghdha | Tsung-Hsien Wen | Blaise Thomson | Steve Young
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

One of the core components of modern spoken dialogue systems is the belief tracker, which estimates the user’s goal at every step of the dialogue. However, most current approaches have difficulty scaling to larger, more complex dialogue domains. This is due to their dependency on either: a) Spoken Language Understanding models that require large amounts of annotated training data; or b) hand-crafted lexicons for capturing some of the linguistic variation in users’ language. We propose a novel Neural Belief Tracking (NBT) framework which overcomes these problems by building on recent advances in representation learning. NBT models reason over pre-trained word vectors, learning to compose them into distributed representations of user utterances and dialogue context. Our evaluation on two datasets shows that this approach surpasses past limitations, matching the performance of state-of-the-art models which rely on hand-crafted semantic lexicons and outperforming them when such lexicons are not provided.

pdf
PyDial: A Multi-domain Statistical Dialogue System Toolkit
Stefan Ultes | Lina M. Rojas-Barahona | Pei-Hao Su | David Vandyke | Dongho Kim | Iñigo Casanueva | Paweł Budzianowski | Nikola Mrkšić | Tsung-Hsien Wen | Milica Gašić | Steve Young
Proceedings of ACL 2017, System Demonstrations

2016

pdf
Multi-domain Neural Network Language Generation for Spoken Dialogue Systems
Tsung-Hsien Wen | Milica Gašić | Nikola Mrkšić | Lina M. Rojas-Barahona | Pei-Hao Su | David Vandyke | Steve Young
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf
Counter-fitting Word Vectors to Linguistic Constraints
Nikola Mrkšić | Diarmuid Ó Séaghdha | Blaise Thomson | Milica Gašić | Lina M. Rojas-Barahona | Pei-Hao Su | David Vandyke | Tsung-Hsien Wen | Steve Young
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf
On-line Active Reward Learning for Policy Optimisation in Spoken Dialogue Systems
Pei-Hao Su | Milica Gašić | Nikola Mrkšić | Lina M. Rojas-Barahona | Stefan Ultes | David Vandyke | Tsung-Hsien Wen | Steve Young
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
Exploiting Sentence and Context Representations in Deep Neural Models for Spoken Language Understanding
Lina M. Rojas-Barahona | Milica Gašić | Nikola Mrkšić | Pei-Hao Su | Stefan Ultes | Tsung-Hsien Wen | Steve Young
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This paper presents a deep learning architecture for the semantic decoder component of a Statistical Spoken Dialogue System. In a slot-filling dialogue, the semantic decoder predicts the dialogue act and a set of slot-value pairs from a set of n-best hypotheses returned by the Automatic Speech Recognition. Most current models for spoken language understanding assume (i) word-aligned semantic annotations as in sequence taggers and (ii) delexicalisation, or a mapping of input words to domain-specific concepts using heuristics that try to capture morphological variation but that do not scale to other domains nor to language variation (e.g., morphology, synonyms, paraphrasing ). In this work the semantic decoder is trained using unaligned semantic annotations and it uses distributed semantic representation learning to overcome the limitations of explicit delexicalisation. The proposed architecture uses a convolutional neural network for the sentence representation and a long-short term memory network for the context representation. Results are presented for the publicly available DSTC2 corpus and an In-car corpus which is similar to DSTC2 but has a significantly higher word error rate (WER).

pdf
Conditional Generation and Snapshot Learning in Neural Dialogue Systems
Tsung-Hsien Wen | Milica Gašić | Nikola Mrkšić | Lina M. Rojas-Barahona | Pei-Hao Su | Stefan Ultes | David Vandyke | Steve Young
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2015

pdf
Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking
Tsung-Hsien Wen | Milica Gašić | Dongho Kim | Nikola Mrkšić | Pei-Hao Su | David Vandyke | Steve Young
Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf
Learning Domain-Independent Dialogue Policies via Ontology Parameterisation
Zhuoran Wang | Tsung-Hsien Wen | Pei-Hao Su | Yannis Stylianou
Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf
Reward Shaping with Recurrent Neural Networks for Speeding up On-Line Policy Learning in Spoken Dialogue Systems
Pei-Hao Su | David Vandyke | Milica Gašić | Nikola Mrkšić | Tsung-Hsien Wen | Steve Young
Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf
Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems
Tsung-Hsien Wen | Milica Gašić | Nikola Mrkšić | Pei-Hao Su | David Vandyke | Steve Young
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf
Multi-domain Dialog State Tracking using Recurrent Neural Networks
Nikola Mrkšić | Diarmuid Ó Séaghdha | Blaise Thomson | Milica Gašić | Pei-Hao Su | David Vandyke | Tsung-Hsien Wen | Steve Young
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)