Shiyi Qi
2023
Once is Enough: A Light-Weight Cross-Attention for Fast Sentence Pair Modeling
Yuanhang Yang
|
Shiyi Qi
|
Chuanyi Liu
|
Qifan Wang
|
Cuiyun Gao
|
Zenglin Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Transformer-based models have achieved great success on sentence pair modeling tasks, such as answer selection and natural language inference (NLI). These models generally perform cross-attention over input pairs, leading to prohibitive computational cost. Recent studies propose dual-encoder and late interaction architectures for faster computation. However, the balance between the expressive of cross-attention and computation speedup still needs better coordinated. To this end, this paper introduces a novel paradigm TopicAns for efficient sentence pair modeling. TopicAns involves a lightweight cross-attention mechanism. It conducts query encoding only once while modeling the query-candidate interaction in parallel. Extensive experiments conducted on four tasks demonstrate that our TopicAnscan speed up sentence pairing by over 113x while achieving comparable performance as the more expensive cross-attention models.
Search