Romaric Besançon


2023

pdf
Détection d’événements à partir de peu d’exemples par seuillage dynamique
Aboubacar Tuo | Romaric Besançon | Olivier Ferret | Julien Tourille
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 4 : articles déjà soumis ou acceptés en conférence internationale

Les études récentes abordent la détection d’événements à partir de peu de données comme une tâche d’annotation de séquences en utilisant des réseaux prototypiques. Dans ce contexte, elles classifient chaque mot d’une phrase donnée en fonction de leurs similarités avec des prototypes construits pour chaque type d’événement et pour la classe nulle “non-événement”. Cependant, le prototype de la classe nulle agrège par définition un ensemble de mots sémantiquement hétérogènes, ce qui nuit à la discrimination entre les mots déclencheurs et non déclencheurs. Dans cet article, nous abordons ce problème en traitant la détection des mots non-déclencheurs comme un problème de détection d’exemples “hors-domaine” et proposons une méthode pour fixer dynamiquement un seuil de similarité pour cette détection.

pdf
Reconnaissance d’Entités Nommées fondée sur des Modèles de Langue Enrichis avec des Définitions des Types d’Entités
Jesús Lovón Melgarejo | Jose Moreno | Romaric Besançon | Olivier Ferret | Lynda Tamine
Actes de CORIA-TALN 2023. Actes de la 18e Conférence en Recherche d'Information et Applications (CORIA)

Des études récentes ont identifié de nouveaux défis dans la tâche de reconnaissance d’entités nommées (NER), tels que la reconnaissance d’entités complexes qui ne sont pas des phrases nominales simples et/ou figurent dans des entrées textuelles courtes, avec une faible quantité d’informations contextuelles. Cet article propose une nouvelle approche qui relève ce défi, en se basant sur des modèles de langues pré-entraînés par enrichissement des définitions des types d’entités issus d’une base de connaissances. Les expériences menées dans le cadre de la tâche MultiCoNER I de SemEval ont montré que l’approche proposée permet d’atteindre des gains en performance par rapport aux modèles de référence de la tâche.

pdf
MEERQAT-IRIT at SemEval-2023 Task 2: Leveraging Contextualized Tag Descriptors for Multilingual Named Entity Recognition
Jesus Lovon-Melgarejo | Jose G. Moreno | Romaric Besançon | Olivier Ferret | Lynda Lechani
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper describes the system we submitted to the SemEval 2023 Task 2 Multilingual Complex Named Entity Recognition (MultiCoNER II) in four monolingual tracks (English, Spanish, French, and Portuguese). Considering the low context setting and the fine-grained taxonomy presented in this task, we propose a system that leverages the language model representations using hand-crafted tag descriptors. We explored how integrating the contextualized representations of tag descriptors with a language model can help improve the model performance for this task. We performed our evaluations on the development and test sets used in the task for the Practice Phase and the Evaluation Phase respectively.

2022

pdf
Stratégies d’adaptation pour la reconnaissance d’entités médicales en français (Adaptation strategies for biomedical named entity recognition in French)
Tiphaine Le Clercq de Lannoy | Romaric Besançon | Olivier Ferret | Julien Tourille | Frédérique Brin-Henry | Bianca Vieru
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

Dans un contexte où peu de corpus annotés pour l’extraction d’entités médicales sont disponibles, nous étudions dans cet article une approche hybride combinant utilisation de connaissances spécialisées et adaptation de modèles de langues en mettant l’accent sur l’effet du pré-entraînement d’un modèle de langue généraliste (CamemBERT) sur différents corpus. Les résultats sont obtenus sur le corpus QUAERO. Nous montrons que pré-entraîner un modèle avec un corpus spécialisé, même de taille réduite, permet d’observer une amélioration des résultats. La combinaison de plusieurs approches permet de gagner un à sept points de F1-mesure selon le corpus de test et la méthode.

pdf
Mieux utiliser BERT pour la détection d’évènements à partir de peu d’exemples (Better exploitation of BERT for few-shot event detection)
Aboubacar Tuo | Romaric Besançon | Olivier Ferret | Julien Tourille
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

Les méthodes actuelles pour la détection d’évènements, qui s’appuient essentiellement sur l’apprentissage supervisé profond, s’avèrent très coûteuses en données annotées. Parmi les approches pour l’apprentissage à partir de peu de données, nous exploitons dans cet article le méta-apprentissage et l’utilisation de l’encodeur BERT pour cette tâche. Plus particulièrement, nous explorons plusieurs stratégies pour mieux exploiter les informations présentes dans les différentes couches d’un modèle BERT pré-entraîné et montrons que ces stratégies simples permettent de dépasser les résultats de l’état de l’art pour cette tâche en anglais.

pdf
Un jeu de données pour répondre à des questions visuelles à propos d’entités nommées en utilisant des bases de connaissances (ViQuAE, a Dataset for Knowledge-based Visual Question Answering about Named Entities)
Paul Lerner | Olivier Ferret | Camille Guinaudeau | Hervé Le Borgne | Romaric Besançon | Jose Moreno | Jesús Lovón-Melgarejo
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

Dans le contexte général des traitements multimodaux, nous nous intéressons à la tâche de réponse à des questions visuelles à propos d’entités nommées en utilisant des bases de connaissances (KVQAE). Nous mettons à disposition ViQuAE, un nouveau jeu de données de 3 700 questions associées à des images, annoté à l’aide d’une méthode semi-automatique. C’est le premier jeu de données de KVQAE comprenant des types d’entités variés associé à une base de connaissances composée d’1,5 million d’articles Wikipédia, incluant textes et images. Nous proposons également un modèle de référence de KVQAE en deux étapes : recherche d’information puis extraction des réponses. Les résultats de nos expériences démontrent empiriquement la difficulté de la tâche et ouvrent la voie à une meilleure représentation multimodale des entités nommées.

pdf bib
Un jeu de données pour répondre à des questions visuelles à propos d’entités nommées [A dataset for answering visual questions about named entities]
Paul Lerner | Salem Messoud | Olivier Ferret | Camille Guinaudeau | Hervé Le Borgne | Romaric Besançon | Jose G. Moreno | Jesús Lovón Melgarejo
Traitement Automatique des Langues, Volume 63, Numéro 2 : Traitement automatique des langues intermodal et multimodal [Cross-modal and multimodal natural language processing]

pdf
Can We Guide a Multi-Hop Reasoning Language Model to Incrementally Learn at Each Single-Hop?
Jesus Lovon-Melgarejo | Jose G. Moreno | Romaric Besançon | Olivier Ferret | Lynda Tamine
Proceedings of the 29th International Conference on Computational Linguistics

Despite the success of state-of-the-art pre-trained language models (PLMs) on a series of multi-hop reasoning tasks, they still suffer from their limited abilities to transfer learning from simple to complex tasks and vice-versa. We argue that one step forward to overcome this limitation is to better understand the behavioral trend of PLMs at each hop over the inference chain. Our critical underlying idea is to mimic human-style reasoning: we envision the multi-hop reasoning process as a sequence of explicit single-hop reasoning steps. To endow PLMs with incremental reasoning skills, we propose a set of inference strategies on relevant facts and distractors allowing us to build automatically generated training datasets. Using the SHINRA and ConceptNet resources jointly, we empirically show the effectiveness of our proposal on multiple-choice question answering and reading comprehension, with a relative improvement in terms of accuracy of 68.4% and 16.0% w.r.t. classic PLMs, respectively.

2021

pdf
Intérêt des modèles de caractères pour la détection d’événements (The interest of character-level models for event detection)
Emanuela Boros | Romaric Besançon | Olivier Ferret | Brigitte Grau
Actes de la 28e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

Cet article aborde la tâche de détection d’événements, visant à identifier et catégoriser les mentions d’événements dans les textes. Une des difficultés de cette tâche est le problème des mentions d’événements correspondant à des mots mal orthographiés, très spécifiques ou hors vocabulaire. Pour analyser l’impact de leur prise en compte par le biais de modèles de caractères, nous proposons d’intégrer des plongements de caractères, qui peuvent capturer des informations morphologiques et de forme sur les mots, à un modèle convolutif pour la détection d’événements. Plus précisément, nous évaluons deux stratégies pour réaliser une telle intégration et montrons qu’une approche de fusion tardive surpasse à la fois une approche de fusion précoce et des modèles intégrant des informations sur les caractères ou les sous-mots tels que ELMo ou BERT.

2020

pdf
Building a Multimodal Entity Linking Dataset From Tweets
Omar Adjali | Romaric Besançon | Olivier Ferret | Hervé Le Borgne | Brigitte Grau
Proceedings of the Twelfth Language Resources and Evaluation Conference

The task of Entity linking, which aims at associating an entity mention with a unique entity in a knowledge base (KB), is useful for advanced Information Extraction tasks such as relation extraction or event detection. Most of the studies that address this problem rely only on textual documents while an increasing number of sources are multimedia, in particular in the context of social media where messages are often illustrated with images. In this article, we address the Multimodal Entity Linking (MEL) task, and more particularly the problem of its evaluation. To this end, we propose a novel method to quasi-automatically build annotated datasets to evaluate methods on the MEL task. The method collects text and images to jointly build a corpus of tweets with ambiguous mentions along with a Twitter KB defining the entities. We release a new annotated dataset of Twitter posts associated with images. We study the key characteristics of the proposed dataset and evaluate the performance of several MEL approaches on it.

pdf
Représentation dynamique et spécifique du contexte textuel pour l’extraction d’événements (Dynamic and specific textual context representation for event extraction)
Dorian Kodelja | Romaric Besançon | Olivier Ferret
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles

Dans cet article, focalisé sur l’extraction supervisée de mentions d’événements dans les textes, nous proposons d’étendre un modèle opérant au niveau phrastique et reposant sur une architecture neuronale de convolution de graphe exploitant les dépendances syntaxiques. Nous y intégrons pour ce faire un contexte plus large au travers de la représentation de phrases distantes sélectionnées sur la base de relations de coréférence entre entités. En outre, nous montrons l’intérêt d’une telle intégration au travers d’évaluations menées sur le corpus de référence TAC Event 2015.

2019

pdf bib
Modèles neuronaux pour l’extraction supervisée d’événements : état de l’art [Neural models for supervised event extraction: state of the art]
Dorian Kodelja | Romaric Besançon | Olivier Ferret
Traitement Automatique des Langues, Volume 60, Numéro 1 : Varia [Varia]

2018

pdf
Intégration de contexte global par amorçage pour la détection d’événements (Integrating global context via bootstrapping for event detection)
Dorian Kodelja | Romaric Besançon | Olivier Ferret
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN

Les approches neuronales obtiennent depuis plusieurs années des résultats intéressants en extraction d’événements. Cependant, les approches développées dans ce cadre se limitent généralement à un contexte phrastique. Or, si certains types d’événements sont aisément identifiables à ce niveau, l’exploitation d’indices présents dans d’autres phrases est parfois nécessaire pour permettre de désambiguïser des événements. Dans cet article, nous proposons ainsi l’intégration d’une représentation d’un contexte plus large pour améliorer l’apprentissage d’un réseau convolutif. Cette représentation est obtenue par amorçage en exploitant les résultats d’un premier modèle convolutif opérant au niveau phrastique. Dans le cadre d’une évaluation réalisée sur les données de la campagne TAC 2017, nous montrons que ce modèle global obtient un gain significatif par rapport au modèle local, ces deux modèles étant eux-mêmes compétitifs par rapport aux résultats de TAC 2017. Nous étudions également en détail le gain de performance de notre nouveau modèle au travers de plusieurs expériences complémentaires.

pdf
Utilisation de Représentations Distribuées de Relations pour la Désambiguïsation d’Entités Nommées (Exploiting Relation Embeddings to Improve Entity Linking )
Nicolas Wagner | Romaric Besançon | Olivier Ferret
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN

L’identification des entités nommées dans un texte est une étape fondamentale pour de nombreuses tâches d’extraction d’information. Pour avoir une identification complète, une étape de désambiguïsation des entités similaires doit être réalisée. Celle-ci s’appuie souvent sur la seule description textuelle des entités. Or, les bases de connaissances contiennent des informations plus riches, sous la forme de relations entre les entités : cette information peut également être exploitée pour améliorer la désambiguïsation des entités. Nous proposons dans cet article une approche d’apprentissage de représentations distribuées de ces relations et leur utilisation pour la tâche de désambiguïsation d’entités nommées. Nous montrons le gain de cette méthode sur un corpus d’évaluation standard, en anglais, issu de la tâche de désambiguïsation d’entités de la campagne TAC-KBP.

2017

pdf
Apprendre des représentations jointes de mots et d’entités pour la désambiguïsation d’entités (Combining Word and Entity Embeddings for Entity Linking)
José G. Moreno | Romaric Besançon | Romain Beaumont | Eva D’Hondt | Anne-Laure Ligozat | Sophie Rosset | Xavier Tannier | Brigitte Grau
Actes des 24ème Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 - Articles longs

La désambiguïsation d’entités (ou liaison d’entités), qui consiste à relier des mentions d’entités d’un texte à des entités d’une base de connaissance, est un problème qui se pose, entre autre, pour le peuplement automatique de bases de connaissances à partir de textes. Une difficulté de cette tâche est la résolution d’ambiguïtés car les systèmes ont à choisir parmi un nombre important de candidats. Cet article propose une nouvelle approche fondée sur l’apprentissage joint de représentations distribuées des mots et des entités dans le même espace, ce qui permet d’établir un modèle robuste pour la comparaison entre le contexte local de la mention d’entité et les entités candidates.

2016

pdf
A Dataset for Open Event Extraction in English
Kiem-Hieu Nguyen | Xavier Tannier | Olivier Ferret | Romaric Besançon
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

This article presents a corpus for development and testing of event schema induction systems in English. Schema induction is the task of learning templates with no supervision from unlabeled texts, and to group together entities corresponding to the same role in a template. Most of the previous work on this subject relies on the MUC-4 corpus. We describe the limits of using this corpus (size, non-representativeness, similarity of roles across templates) and propose a new, partially-annotated corpus in English which remedies some of these shortcomings. We make use of Wikinews to select the data inside the category Laws & Justice, and query Google search engine to retrieve different documents on the same events. Only Wikinews documents are manually annotated and can be used for evaluation, while the others can be used for unsupervised learning. We detail the methodology used for building the corpus and evaluate some existing systems on this new data.

pdf
Utilisation des relations d’une base de connaissances pour la désambiguïsation d’entités nommées (Using the Relations of a Knowledge Base to Improve Entity Linking )
Romaric Besançon | Hani Daher | Olivier Ferret | Hervé Le Borgne
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 2 : TALN (Articles longs)

L’identification des entités nommées dans un texte est une tâche essentielle des outils d’extraction d’information dans de nombreuses applications. Cette identification passe par la reconnaissance d’une mention d’entité dans le texte, ce qui a été très largement étudié, et par l’association des entités reconnues à des entités connues, présentes dans une base de connaissances. Cette association repose souvent sur une mesure de similarité entre le contexte textuel de la mention de l’entité et un contexte textuel de description des entités de la base de connaissances. Or, ce contexte de description n’est en général pas présent pour toutes les entités. Nous proposons d’exploiter les relations de la base de connaissances pour ajouter un indice de désambiguïsation pour ces entités. Nous évaluons notre travail sur des corpus d’évaluation standards en anglais issus de la tâche de désambiguïsation d’entités de la campagne TAC-KBP.

2015

pdf
Désambiguïsation d’entités pour l’induction non supervisée de schémas événementiels
Kiem-Hieu Nguyen | Xavier Tannier | Olivier Ferret | Romaric Besançon
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Cet article présente un modèle génératif pour l’induction non supervisée d’événements. Les précédentes méthodes de la littérature utilisent uniquement les têtes des syntagmes pour représenter les entités. Pourtant, le groupe complet (par exemple, ”un homme armé”) apporte une information plus discriminante (que ”homme”). Notre modèle tient compte de cette information et la représente dans la distribution des schémas d’événements. Nous montrons que ces relations jouent un rôle important dans l’estimation des paramètres, et qu’elles conduisent à des distributions plus cohérentes et plus discriminantes. Les résultats expérimentaux sur le corpus de MUC-4 confirment ces progrès.

pdf
Méthode faiblement supervisée pour l’extraction d’opinion ciblée dans un domaine spécifique
Romaric Besançon
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

La détection d’opinion ciblée a pour but d’attribuer une opinion à une caractéristique particulière d’un produit donné. La plupart des méthodes existantes envisagent pour cela une approche non supervisée. Or, les utilisateurs ont souvent une idée a priori des caractéristiques sur lesquelles ils veulent découvrir l’opinion des gens. Nous proposons dans cet article une méthode pour une extraction d’opinion ciblée, qui exploite cette information minimale sur les caractéristiques d’intérêt. Ce modèle s’appuie sur une segmentation automatique des textes, un enrichissement des données disponibles par similarité sémantique, et une annotation de l’opinion par classification supervisée. Nous montrons l’intérêt de l’approche sur un cas d’étude dans le domaine des jeux vidéos.

pdf
Generative Event Schema Induction with Entity Disambiguation
Kiem-Hieu Nguyen | Xavier Tannier | Olivier Ferret | Romaric Besançon
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf bib
Study of Domain Dependant Multi-Polarity Words for Document Level Opinion Mining (Influence des marqueurs multi-polaires dépendant du domaine pour la fouille d’opinion au niveau du texte) [in French]
Morgane Marchand | Romaric Besançon | Olivier Mesnard | Anne Vilnat
Proceedings of TALN 2014 (Volume 1: Long Papers)

pdf
Event Role Labelling using a Neural Network Model (Étiquetage en rôles événementiels fondé sur l’utilisation d’un modèle neuronal) [in French]
Emanuela Boroş | Romaric Besançon | Olivier Ferret | Brigitte Grau
Proceedings of TALN 2014 (Volume 1: Long Papers)

pdf
Event Role Extraction using Domain-Relevant Word Representations
Emanuela Boroş | Romaric Besançon | Olivier Ferret | Brigitte Grau
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2013

pdf
[LVIC-LIMSI]: Using Syntactic Features and Multi-polarity Words for Sentiment Analysis in Twitter
Morgane Marchand | Alexandru Ginsca | Romaric Besançon | Olivier Mesnard
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013)

pdf
Semantic relation clustering for unsupervised information extraction (Regroupement sémantique de relations pour l’extraction d’information non supervisée) [in French]
Wei Wang | Romaric Besançon | Olivier Ferret | Brigitte Grau
Proceedings of TALN 2013 (Volume 1: Long Papers)

pdf
Une méthode d’extraction d’information fondée sur les graphes pour le remplissage de formulaires [A graph-based information extraction method for filling forms]
Ludovic Jean-Louis | Romaric Besançon | Olivier Ferret
Traitement Automatique des Langues, Volume 54, Numéro 1 : Varia [Varia]

pdf
Extraction et regroupement de relations entre entités pour l’extraction d’information non supervisée [Extraction and clustering of entity relations for unsupervised information extraction]
Wei Wang | Romaric Besançon | Olivier Ferret | Brigitte Grau
Traitement Automatique des Langues, Volume 54, Numéro 2 : Entité Nommées [Named Entities]

2012

pdf
Une méthode d’extraction d’information fondée sur les graphes pour le remplissage de formulaires (A Graph-Based Method for Template Filling in Information Extraction) [in French]
Ludovic Jean-Louis | Romaric Besançon | Olivier Ferret
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 2: TALN

pdf
Evaluation of Unsupervised Information Extraction
Wei Wang | Romaric Besançon | Olivier Ferret | Brigitte Grau
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Unsupervised methods gain more and more attention nowadays in information extraction area, which allows to design more open extraction systems. In the domain of unsupervised information extraction, clustering methods are of particular importance. However, evaluating the results of clustering remains difficult at a large scale, especially in the absence of reliable reference. On the basis of our experiments on unsupervised relation extraction, we first discuss in this article how to evaluate clustering quality without a reference by relying on internal measures. Then we propose a method, supported by a dedicated annotation tool, for building a set of reference clusters of relations from a corpus. Moreover, we apply it to our experimental framework and illustrate in this way how to build a significant reference for unsupervised relation extraction, more precisely made of 80 clusters gathering more than 4,000 relation instances, in a short time. Finally, we present how such reference is exploited for the evaluation of clustering with external measures and analyze the results of the application of these measures to the clusters of relations produced by our unsupervised relation extraction system.

pdf
Evaluation of a Complex Information Extraction Application in Specific Domain
Romaric Besançon | Olivier Ferret | Ludovic Jean-Louis
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Operational intelligence applications in specific domains are developed using numerous natural language processing technologies and tools. A challenge for this integration is to take into account the limitations of each of these technologies in the global evaluation of the application. We present in this article a complex intelligence application for the gathering of information from the Web about recent seismic events. We present the different components needed for the development of such system, including Information Extraction, Filtering and Clustering, and the technologies behind each component. We also propose an independent evaluation of each component and an insight of their influence in the overall performance of the system.

2011

pdf
Une approche faiblement supervisée pour l’extraction de relations à large échelle (A weakly supervised approach to large scale relation extraction)
Ludovic Jean-Louis | Romaric Besançon | Olivier Ferret | Adrien Durand
Actes de la 18e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Les systèmes d’extraction d’information traditionnels se focalisent sur un domaine spécifique et un nombre limité de relations. Les travaux récents dans ce domaine ont cependant vu émerger la problématique des systèmes d’extraction d’information à large échelle. À l’instar des systèmes de question-réponse en domaine ouvert, ces systèmes se caractérisent à la fois par le traitement d’un grand nombre de relations et par une absence de restriction quant aux domaines abordés. Dans cet article, nous présentons un système d’extraction d’information à large échelle fondé sur un apprentissage faiblement supervisé de patrons d’extraction de relations. Cet apprentissage repose sur la donnée de couples d’entités en relation dont la projection dans un corpus de référence permet de constituer la base d’exemples de relations support de l’induction des patrons d’extraction. Nous présentons également les résultats de l’application de cette approche dans le cadre d’évaluation défini par la tâche KBP de l’évaluation TAC 2010.

pdf
Filtrage de relations pour l’extraction d’information non supervisée (Filtering relations for unsupervised information extraction)
Wei Wang | Romaric Besançon | Olivier Ferret | Brigitte Grau
Actes de la 18e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts

Le domaine de l’extraction d’information s’est récemment développé en limitant les contraintes sur la définition des informations à extraire, ouvrant la voie à des applications de veille plus ouvertes. Dans ce contexte de l’extraction d’information non supervisée, nous nous intéressons à l’identification et la caractérisation de nouvelles relations entre des types d’entités fixés. Un des défis de cette tâche est de faire face à la masse importante de candidats pour ces relations lorsque l’on considère des corpus de grande taille. Nous présentons dans cet article une approche pour le filtrage des relations combinant méthode heuristique et méthode par apprentissage. Nous évaluons ce filtrage de manière intrinsèque et par son impact sur un regroupement sémantique des relations.

pdf
Text Segmentation and Graph-based Method for Template Filling in Information Extraction
Ludovic Jean-Louis | Romaric Besançon | Olivier Ferret
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf
LIMA : A Multilingual Framework for Linguistic Analysis and Linguistic Resources Development and Evaluation
Romaric Besançon | Gaël de Chalendar | Olivier Ferret | Faiza Gara | Olivier Mesnard | Meriama Laïb | Nasredine Semmar
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

The increasing amount of available textual information makes necessary the use of Natural Language Processing (NLP) tools. These tools have to be used on large collections of documents in different languages. But NLP is a complex task that relies on many processes and resources. As a consequence, NLP tools must be both configurable and efficient: specific software architectures must be designed for this purpose. We present in this paper the LIMA multilingual analysis platform, developed at CEA LIST. This configurable platform has been designed to develop NLP based industrial applications while keeping enough flexibility to integrate various processes and resources. This design makes LIMA a linguistic analyzer that can handle languages as different as French, English, German, Arabic or Chinese. Beyond its architecture principles and its capabilities as a linguistic analyzer, LIMA also offers a set of tools dedicated to the test and the evaluation of linguistic modules and to the production and the management of new linguistic resources.

pdf
Utilisation d’indices temporels pour la segmentation événementielle de textes
Ludovic Jean-Louis | Romaric Besançon | Olivier Ferret
Actes de la 17e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Dans le domaine de l’Extraction d’Information, une place importante est faite à l’extraction d’événements dans des dépêches d’actualité, particulièrement justifiée dans le contexte d’applications de veille. Or il est fréquent qu’une dépêche d’actualité évoque plusieurs événements de même nature pour les comparer. Nous proposons dans cet article d’étudier des méthodes pour segmenter les textes en séparant les événements, dans le but de faciliter le rattachement des informations pertinentes à l’événement principal. L’idée est d’utiliser des modèles d’apprentissage statistique exploitant les marqueurs temporels présents dans les textes pour faire cette segmentation. Nous présentons plus précisément deux modèles (HMM et CRF) entraînés pour cette tâche et, en faisant une évaluation de ces modèles sur un corpus de dépêches traitant d’événements sismiques, nous montrons que les méthodes proposées permettent d’obtenir des résultats au moins aussi bons que ceux d’une approche ad hoc, avec une approche beaucoup plus générique.

2008

pdf
The INFILE Project: a Crosslingual Filtering Systems Evaluation Campaign
Romaric Besançon | Stéphane Chaudiron | Djamel Mostefa | Ismaïl Timimi | Khalid Choukri
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

The InFile project (INformation, FILtering, Evaluation) is a cross-language adaptive filtering evaluation campaign, sponsored by the French National Research Agency. The campaign is organized by the CEA LIST, ELDA and the University of Lille3-GERiiCO. It has an international scope as it is a pilot track of the CLEF 2008 campaigns. The corpus is built from a collection of about 1.4 million newswires (10 GB) in three languages, Arabic, English and French provided by the French news Agency Agence France Press (AFP) and selected from a 3-year period. The profiles corpus is made of 50 profiles from which 30 concern general news and events (national and international affairs, politics, sports?) and 20 concern scientific and technical subjects.

2002

pdf
Evaluation of a Vector Space Similarity Measure in a Multilingual Framework
Romaric Besançon | Martin Rajman
Proceedings of the Third International Conference on Language Resources and Evaluation (LREC’02)

pdf
Filtrages syntaxiques de co-occurrences pour la représentation vectorielle de documents
Romaric Besançon | Martin Rajman
Actes de la 9ème conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

L’intégration de co-occurrences dans les modèles de représentation vectorielle de documents s’est avérée une source d’amélioration de la pertinence des mesures de similarités textuelles calculées dans le cadre de ces modèles (Rajman et al., 2000; Besançon, 2001). Dans cette optique, la définition des contextes pris en compte pour les co-occurrences est cruciale, par son influence sur les performances des modèles à base de co-occurrences. Dans cet article, nous proposons d’étudier deux méthodes de filtrage des co-occurrences fondées sur l’utilisation d’informations syntaxiques supplémentaires. Nous présentons également une évaluation de ces méthodes dans le cadre de la tâche de la recherche documentaire.

2001

pdf
Intégration probabiliste de sens dans la représentation de textes
Romaric Besançon | Antoine Rozenknop | Jean-Cédric Chappelier | Martin Rajman
Actes de la 8ème conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Le sujet du présent article est l’intégration des sens portés par les mots en contexte dans une représentation vectorielle de textes, au moyen d’un modèle probabiliste. La représentation vectorielle considérée est le modèle DSIR, qui étend le modèle vectoriel (VS) standard en tenant compte à la fois des occurrences et des co-occurrences de mots dans les documents. L’intégration des sens dans cette représentation se fait à l’aide d’un modèle de Champ de Markov avec variables cachées, en utilisant une information sémantique dérivée de relations de synonymie extraites d’un dictionnaire de synonymes.