Maxwell Weinzierl


2024

pdf
Discovering and Articulating Frames of Communication from Social Media Using Chain-of-Thought Reasoning
Maxwell Weinzierl | Sanda Harabagiu
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Frames of Communication (FoCs) are ubiquitous in social media discourse. They define what counts as a problem, diagnose what is causing the problem, elicit moral judgments and imply remedies for resolving the problem. Most research on automatic frame detection involved the recognition of the problems addressed by frames, but did not consider the articulation of frames. Articulating an FoC involves reasoning with salient problems, their cause and eventual solution. In this paper we present a method for Discovering and Articulating FoCs (DA-FoC) that relies on a combination of Chain-of-Thought prompting of large language models (LLMs) with In-Context Active Curriculum Learning. Very promising evaluation results indicate that 86.72% of the FoCs encoded by communication experts on the same reference dataset were also uncovered by DA-FoC. Moreover, DA-FoC uncovered many new FoCs, which escaped the experts. Interestingly, 55.1% of the known FoCs were judged as being better articulated than the human-written ones, while 93.8% of the new FoCs were judged as having sound rationale and being clearly articulated.

2023

pdf
Identification of Multimodal Stance Towards Frames of Communication
Maxwell Weinzierl | Sanda Harabagiu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Frames of communication are often evoked in multimedia documents. When an author decides to add an image to a text, one or both of the modalities may evoke a communication frame. Moreover, when evoking the frame, the author also conveys her/his stance towards the frame. Until now, determining if the author is in favor of, against or has no stance towards the frame was performed automatically only when processing texts. This is due to the absence of stance annotations on multimedia documents. In this paper we introduce MMVax-Stance, a dataset of 11,300 multimedia documents retrieved from social media, which have stance annotations towards 113 different frames of communication. This dataset allowed us to experiment with several models of multimedia stance detection, which revealed important interactions between texts and images in the inference of stance towards communication frames. When inferring the text/image relations, a set of 46,606 synthetic examples of multimodal documents with known stance was generated. This greatly impacted the quality of identifying multimedia stance, yielding an improvement of 20% in F1-score.

2022

pdf
VaccineLies: A Natural Language Resource for Learning to Recognize Misinformation about the COVID-19 and HPV Vaccines
Maxwell Weinzierl | Sanda Harabagiu
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Billions of COVID-19 vaccines have been administered, but many remain hesitant. Misinformation about the COVID-19 vaccines and other vaccines, propagating on social media, is believed to drive hesitancy towards vaccination. The ability to automatically recognize misinformation targeting vaccines on Twitter depends on the availability of data resources. In this paper we present VaccineLies, a large collection of tweets propagating misinformation about two vaccines: the COVID-19 vaccines and the Human Papillomavirus (HPV) vaccines. Misinformation targets are organized in vaccine-specific taxonomies, which reveal the misinformation themes and concerns. The ontological commitments of the misinformation taxonomies provide an understanding of which misinformation themes and concerns dominate the discourse about the two vaccines covered in VaccineLies. The organization into training, testing and development sets of VaccineLies invites the development of novel supervised methods for detecting misinformation on Twitter and identifying the stance towards it. Furthermore, VaccineLies can be a stepping stone for the development of datasets focusing on misinformation targeting additional vaccines.

2020

pdf
HLTRI at W-NUT 2020 Shared Task-3: COVID-19 Event Extraction from Twitter Using Multi-Task Hopfield Pooling
Maxwell Weinzierl | Sanda Harabagiu
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

Extracting structured knowledge involving self-reported events related to the COVID-19 pandemic from Twitter has the potential to inform surveillance systems that play a critical role in public health. The event extraction challenge presented by the W-NUT 2020 Shared Task 3 focused on the identification of five types of events relevant to the COVID-19 pandemic and their respective set of pre-defined slots encoding demographic, epidemiological, clinical as well as spatial, temporal or subjective knowledge. Our participation in the challenge led to the design of a neural architecture for jointly identifying all Event Slots expressed in a tweet relevant to an event of interest. This architecture uses COVID-Twitter-BERT as the pre-trained language model. In addition, to learn text span embeddings for each Event Slot, we relied on a special case of Hopfield Networks, namely Hopfield pooling. The results of the shared task evaluation indicate that our system performs best when it is trained on a larger dataset, while it remains competitive when training on smaller datasets.