Mahnoosh Mehrabani
2021
A Hybrid Approach to Scalable and Robust Spoken Language Understanding in Enterprise Virtual Agents
Ryan Price
|
Mahnoosh Mehrabani
|
Narendra Gupta
|
Yeon-Jun Kim
|
Shahab Jalalvand
|
Minhua Chen
|
Yanjie Zhao
|
Srinivas Bangalore
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers
Spoken language understanding (SLU) extracts the intended mean- ing from a user utterance and is a critical component of conversational virtual agents. In enterprise virtual agents (EVAs), language understanding is substantially challenging. First, the users are infrequent callers who are unfamiliar with the expectations of a pre-designed conversation flow. Second, the users are paying customers of an enterprise who demand a reliable, consistent and efficient user experience when resolving their issues. In this work, we describe a general and robust framework for intent and entity extraction utilizing a hybrid of statistical and rule-based approaches. Our framework includes confidence modeling that incorporates information from all components in the SLU pipeline, a critical addition for EVAs to en- sure accuracy. Our focus is on creating accurate and scalable SLU that can be deployed rapidly for a large class of EVA applications with little need for human intervention.
2018
Practical Application of Domain Dependent Confidence Measurement for Spoken Language Understanding Systems
Mahnoosh Mehrabani
|
David Thomson
|
Benjamin Stern
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)
Spoken Language Understanding (SLU), which extracts semantic information from speech, is not flawless, specially in practical applications. The reliability of the output of an SLU system can be evaluated using a semantic confidence measure. Confidence measures are a solution to improve the quality of spoken dialogue systems, by rejecting low-confidence SLU results. In this study we discuss real-world applications of confidence scoring in a customer service scenario. We build confidence models for three major types of dialogue states that are considered as different domains: how may I help you, number capture, and confirmation. Practical challenges to train domain-dependent confidence models, including data limitations, are discussed, and it is shown that feature engineering plays an important role to improve performance. We explore a wide variety of predictor features based on speech recognition, intent classification, and high-level domain knowledge, and find the combined feature set with the best rejection performance for each application.
Search
Co-authors
- Ryan Price 1
- Narendra Gupta 1
- Yeon-Jun Kim 1
- Shahab Jalalvand 1
- Minhua Chen 1
- show all...