Lauren Klein
2023
Riveter: Measuring Power and Social Dynamics Between Entities
Maria Antoniak
|
Anjalie Field
|
Jimin Mun
|
Melanie Walsh
|
Lauren Klein
|
Maarten Sap
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
Riveter provides a complete easy-to-use pipeline for analyzing verb connotations associated with entities in text corpora. We prepopulate the package with connotation frames of sentiment, power, and agency, which have demonstrated usefulness for capturing social phenomena, such as gender bias, in a broad range of corpora. For decades, lexical frameworks have been foundational tools in computational social science, digital humanities, and natural language processing, facilitating multifaceted analysis of text corpora. But working with verb-centric lexica specifically requires natural language processing skills, reducing their accessibility to other researchers. By organizing the language processing pipeline, providing complete lexicon scores and visualizations for all entities in a corpus, and providing functionality for users to target specific research questions, Riveter greatly improves the accessibility of verb lexica and can facilitate a broad range of future research.
2019
Correcting Whitespace Errors in Digitized Historical Texts
Sandeep Soni
|
Lauren Klein
|
Jacob Eisenstein
Proceedings of the 3rd Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
Whitespace errors are common to digitized archives. This paper describes a lightweight unsupervised technique for recovering the original whitespace. Our approach is based on count statistics from Google n-grams, which are converted into a likelihood ratio test computed from interpolated trigram and bigram probabilities. To evaluate this approach, we annotate a small corpus of whitespace errors in a digitized corpus of newspapers from the 19th century United States. Our technique identifies and corrects most whitespace errors while introducing a minimal amount of oversegmentation: it achieves 77% recall at a false positive rate of less than 1%, and 91% recall at a false positive rate of less than 3%.
Search
Co-authors
- Sandeep Soni 1
- Jacob Eisenstein 1
- Maria Antoniak 1
- Anjalie Field 1
- Jimin Mun 1
- show all...