Justin Rousseau
2023
Less Likely Brainstorming: Using Language Models to Generate Alternative Hypotheses
Liyan Tang
|
Yifan Peng
|
Yanshan Wang
|
Ying Ding
|
Greg Durrett
|
Justin Rousseau
Findings of the Association for Computational Linguistics: ACL 2023
A human decision-maker benefits the most from an AI assistant that corrects for their biases. For problems such as generating interpretation of a radiology report given findings, a system predicting only highly likely outcomes may be less useful, where such outcomes are already obvious to the user. To alleviate biases in human decision-making, it is worth considering a broad differential diagnosis, going beyond the most likely options. We introduce a new task, “less likely brainstorming,” that asks a model to generate outputs that humans think are relevant but less likely to happen. We explore the task in two settings: a brain MRI interpretation generation setting and an everyday commonsense reasoning setting. We found that a baseline approach of training with less likely hypotheses as targets generates outputs that humans evaluate as either likely or irrelevant nearly half of the time; standard MLE training is not effective. To tackle this problem, we propose a controlled text generation method that uses a novel contrastive learning strategy to encourage models to differentiate between generating likely and less likely outputs according to humans. We compare our method with several state-of-the-art controlled text generation models via automatic and human evaluations and show that our models’ capability of generating less likely outputs is improved.
Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
Liyan Tang
|
Tanya Goyal
|
Alex Fabbri
|
Philippe Laban
|
Jiacheng Xu
|
Semih Yavuz
|
Wojciech Kryscinski
|
Justin Rousseau
|
Greg Durrett
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The propensity of abstractive summarization models to make factual errors has been studied extensively, including design of metrics to detect factual errors and annotation of errors in current systems’ outputs. However, the ever-evolving nature of summarization systems, metrics, and annotated benchmarks makes factuality evaluation a moving target, and drawing clear comparisons among metrics has become increasingly difficult. In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model. We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models. Critically, our analysis shows that much of the recent improvement in the factuality detection space has been on summaries from older (pre-Transformer) models instead of more relevant recent summarization models. We further perform a finer-grained analysis per error-type and find similar performance variance across error types for different factuality metrics. Our results show that no one metric is superior in all settings or for all error types, and we provide recommendations for best practices given these insights.
Search
Co-authors
- Liyan Tang 2
- Greg Durrett 2
- Yifan Peng 1
- Yanshan Wang 1
- Ying Ding 1
- show all...