Speech-to-Speech and Speech-to-Text translation are currently dynamic areas of research. In our commitment to advance these fields, we present SpeechAlign, a framework designed to evaluate the underexplored field of source-target alignment in speech models. The SpeechAlign framework has two core components. First, to tackle the absence of suitable evaluation datasets, we introduce the Speech Gold Alignment dataset, built upon a English-German text translation gold alignment dataset. Secondly, we introduce two novel metrics, Speech Alignment Error Rate (SAER) and Time-weighted Speech Alignment Error Rate (TW-SAER), which enable the evaluation of alignment quality within speech models. While the former gives equal importance to each word, the latter assigns weights based on the length of the words in the speech signal. By publishing SpeechAlign we provide an accessible evaluation framework for model assessment, and we employ it to benchmark open-source Speech Translation models. In doing so, we contribute to the ongoing research progress within the fields of Speech-to-Speech and Speech-to-Text translation.
This paper describes the submission of the UPC Machine Translation group to the IWSLT 2023 Offline Speech Translation task. Our Speech Translation systems utilize foundation models for speech (wav2vec 2.0) and text (mBART50). We incorporate a Siamese pretraining step of the speech and text encoders with CTC and Optimal Transport, to adapt the speech representations to the space of the text model, thus maximizing transfer learning from MT. After this pretraining, we fine-tune our system end-to-end on ST, with Cross Entropy and Knowledge Distillation. Apart from the available ST corpora, we create synthetic data with SegAugment to better adapt our models to the custom segmentations of the IWSLT test sets. Our best single model obtains 31.2 BLEU points on MuST-C tst-COMMON, 29.8 points on IWLST.tst2020 and 33.4 points on the newly released IWSLT.ACLdev2023.
Language Generation Models produce words based on the previous context. Although existing methods offer input attributions as explanations for a model’s prediction, it is still unclear how prior words affect the model’s decision throughout the layers. In this work, we leverage recent advances in explainability of the Transformer and present a procedure to analyze models for language generation. Using contrastive examples, we compare the alignment of our explanations with evidence of the linguistic phenomena, and show that our method consistently aligns better than gradient-based and perturbation-based baselines. Then, we investigate the role of MLPs inside the Transformer and show that they learn features that help the model predict words that are grammatically acceptable. Lastly, we apply our method to Neural Machine Translation models, and demonstrate that they generate human-like source-target alignments for building predictions.
Transformers have achieved state-of-the-art results across multiple NLP tasks. However, the self-attention mechanism complexity scales quadratically with the sequence length, creating an obstacle for tasks involving long sequences, like in the speech domain. In this paper, we discuss the usefulness of self-attention for Direct Speech Translation. First, we analyze the layer-wise token contributions in the self-attention of the encoder, unveiling local diagonal patterns. To prove that some attention weights are avoidable, we propose to substitute the standard self-attention with a local efficient one, setting the amount of context used based on the results of the analysis. With this approach, our model matches the baseline performance, and improves the efficiency by skipping the computation of those weights that standard attention discards.
This paper describes the system developed at the Universitat Politècnica de Catalunya for the Workshop on Machine Translation 2022 Sign Language Translation Task, in particular, for the sign-to-text direction. We use a Transformer model implemented with the Fairseq modeling toolkit. We have experimented with the vocabulary size, data augmentation techniques and pretraining the model with the PHOENIX-14T dataset. Our system obtains 0.50 BLEU score for the test set, improving the organizers’ baseline by 0.38 BLEU. We remark the poor results for both the baseline and our system, and thus, the unreliability of our findings.
The scientific community is increasingly aware of the necessity to embrace pluralism and consistently represent major and minor social groups. Currently, there are no standard evaluation techniques for different types of biases. Accordingly, there is an urgent need to provide evaluation sets and protocols to measure existing biases in our automatic systems. Evaluating the biases should be an essential step towards mitigating them in the systems. This paper introduces WinoST, a new freely available challenge set for evaluating gender bias in speech translation. WinoST is the speech version of WinoMT, an MT challenge set, and both follow an evaluation protocol to measure gender accuracy. Using an S-Transformer end-to-end speech translation system, we report the gender bias evaluation on four language pairs, and we reveal the inaccuracies in translations generating gender-stereotyped translations.
Transformer-based models have been achieving state-of-the-art results in several fields of Natural Language Processing. However, its direct application to speech tasks is not trivial. The nature of this sequences carries problems such as long sequence lengths and redundancy between adjacent tokens. Therefore, we believe that regular self-attention mechanism might not be well suited for it. Different approaches have been proposed to overcome these problems, such as the use of efficient attention mechanisms. However, the use of these methods usually comes with a cost, which is a performance reduction caused by information loss. In this study, we present the Multiformer, a Transformer-based model which allows the use of different attention mechanisms on each head. By doing this, the model is able to bias the self-attention towards the extraction of more diverse token interactions, and the information loss is reduced. Finally, we perform an analysis of the head contributions, and we observe that those architectures where all heads relevance is uniformly distributed obtain better results. Our results show that mixing attention patterns along the different heads and layers outperforms our baseline by up to 0.7 BLEU.
The Transformer architecture aggregates input information through the self-attention mechanism, but there is no clear understanding of how this information is mixed across the entire model. Additionally, recent works have demonstrated that attention weights alone are not enough to describe the flow of information. In this paper, we consider the whole attention block –multi-head attention, residual connection, and layer normalization– and define a metric to measure token-to-token interactions within each layer. Then, we aggregate layer-wise interpretations to provide input attribution scores for model predictions. Experimentally, we show that our method, ALTI (Aggregation of Layer-wise Token-to-token Interactions), provides more faithful explanations and increased robustness than gradient-based methods.
In Neural Machine Translation (NMT), each token prediction is conditioned on the source sentence and the target prefix (what has been previously translated at a decoding step). However, previous work on interpretability in NMT has mainly focused solely on source sentence tokens’ attributions. Therefore, we lack a full understanding of the influences of every input token (source sentence and target prefix) in the model predictions. In this work, we propose an interpretability method that tracks input tokens’ attributions for both contexts. Our method, which can be extended to any encoder-decoder Transformer-based model, allows us to better comprehend the inner workings of current NMT models. We apply the proposed method to both bilingual and multilingual Transformers and present insights into their behaviour.
This paper describes the submissions of the UPC Machine Translation group to the IWSLT 2022 Offline Speech Translation and Speech-to-Speech Translation tracks. The offline task involves translating English speech to German, Japanese and Chinese text. Our Speech Translation systems are trained end-to-end and are based on large pretrained speech and text models. We use an efficient fine-tuning technique that trains only specific layers of our system, and explore the use of adapter modules for the non-trainable layers. We further investigate the suitability of different speech encoders (wav2vec 2.0, HuBERT) for our models and the impact of knowledge distillation from the Machine Translation model that we use for the decoder (mBART). For segmenting the IWSLT test sets we fine-tune a pretrained audio segmentation model and achieve improvements of 5 BLEU compared to the given segmentation. Our best single model uses HuBERT and parallel adapters and achieves 29.42 BLEU at English-German MuST-C tst-COMMON and 26.77 at IWSLT 2020 test. By ensembling many models, we further increase translation quality to 30.83 BLEU and 27.78 accordingly. Furthermore, our submission for English-Japanese achieves 15.85 and English-Chinese obtains 25.63 BLEU on the MuST-C tst-COMMON sets. Finally, we extend our system to perform English-German Speech-to-Speech Translation with a pretrained Text-to-Speech model.
This paper describes the submission to the IWSLT 2021 offline speech translation task by the UPC Machine Translation group. The task consists of building a system capable of translating English audio recordings extracted from TED talks into German text. Submitted systems can be either cascade or end-to-end and use a custom or given segmentation. Our submission is an end-to-end speech translation system, which combines pre-trained models (Wav2Vec 2.0 and mBART) with coupling modules between the encoder and decoder, and uses an efficient fine-tuning technique, which trains only 20% of its total parameters. We show that adding an Adapter to the system and pre-training it, can increase the convergence speed and the final result, with which we achieve a BLEU score of 27.3 on the MuST-C test set. Our final model is an ensemble that obtains 28.22 BLEU score on the same set. Our submission also uses a custom segmentation algorithm that employs pre-trained Wav2Vec 2.0 for identifying periods of untranscribable text and can bring improvements of 2.5 to 3 BLEU score on the IWSLT 2019 test set, as compared to the result with the given segmentation.