Dilshod Azizov
2023
Frank at ArAIEval Shared Task: Arabic Persuasion and Disinformation: The Power of Pretrained Models
Dilshod Azizov
|
Jiyong Li
|
Shangsong Liang
Proceedings of ArabicNLP 2023
In this work, we present our systems developed for “ArAIEval” shared task of ArabicNLP 2023 (CITATION). We used an mBERT transformer for Subtask 1A, which targets persuasion in Arabic tweets, and we used the MARBERT transformer for Subtask 2A to identify disinformation in Arabic tweets. Our persuasion detection system achieved micro-F1 of 0.745 by surpassing the baseline by 13.2%, and registered a macro-F1 of 0.717 based on leaderboard scores. Similarly, our disinformation system recorded a micro-F1 of 0.816, besting the naïve majority by 6.7%, with a macro-F1 of 0.637. Furthermore, we present our preliminary results on a variety of pre-trained models. In terms of overall ranking, our systems placed 7th out of 16 and 12th out of 17 teams for Subtasks 1A and 2A, respectively.
Frank at NADI 2023 Shared Task: Trio-Based Ensemble Approach for Arabic Dialect Identification
Dilshod Azizov
|
Jiyong Li
|
Shangsong Liang
Proceedings of ArabicNLP 2023
We present our system designed for Subtask 1 in the shared task NADI on Arabic Dialect Identification, which is part of ArabicNLP 2023. In our approach, we utilized models such as: MARBERT, MARBERTv2 (A) and MARBERTv2 (B). Subsequently, we created a majority voting ensemble of these models. We used MARBERTv2 with different hyperparameters, which significantly improved the overall performance of the ensemble model. In terms of performance, our systems achieved a competitive an F1 score of 84.76. Overall, our system secured the 5th position out of 16 participating teams.
Lotus at WojoodNER Shared Task: Multilingual Transformers: Unveiling Flat and Nested Entity Recognition
Jiyong Li
|
Dilshod Azizov
|
Hilal AlQuabeh
|
Shangsong Liang
Proceedings of ArabicNLP 2023
We introduce our systems developed for two subtasks in the shared task “Wojood” on Arabic NER detection, part of ArabicNLP 2023. For Subtask 1, we employ the XLM-R model to predict Flat NER labels for given tokens using a single classifier capable of categorizing all labels. For Subtask 2, we use the XLM-R encoder by building 21 individual classifiers. Each classifier corresponds to a specific label and is designed to determine the presence of its respective label. In terms of performance, our systems achieved competitive micro-F1 scores of 0.83 for Subtask 1 and 0.76 for Subtask 2, according to the leaderboard scores.
Search