Quantifying uncertainty in automatically generated text is important for letting humans check potential hallucinations and making systems more reliable. Conformal prediction is an attractive framework to provide predictions imbued with statistical guarantees, however, its application to text generation is challenging since any i.i.d. assumptions are not realistic. In this paper, we bridge this gap by leveraging recent results on *non-exchangeable* conformal prediction, which still ensures bounds on coverage. The result, *non-exchangeable conformal nucleus sampling*, is a novel extension of the conformal prediction framework to generation based on nearest neighbors. Our method can be used post-hoc for an arbitrary model without extra training and supplies token-level, calibrated prediction sets equipped with statistical guarantees. Experiments in machine translation and language modeling show encouraging results in generation quality. By also producing tighter prediction sets with good coverage, we thus give a more theoretically principled way to perform sampling with conformal guarantees.
Although neural-based machine translation evaluation metrics, such as COMET or BLEURT, have achieved strong correlations with human judgements, they are sometimes unreliable in detecting certain phenomena that can be considered as critical errors, such as deviations in entities and numbers. In contrast, traditional evaluation metrics such as BLEU or chrF, which measure lexical or character overlap between translation hypotheses and human references, have lower correlations with human judgements but are sensitive to such deviations. In this paper, we investigate several ways of combining the two approaches in order to increase robustness of state-of-the-art evaluation methods to translations with critical errors. We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena, which leads to gains in correlations with humans and on the recent DEMETR benchmark on several language pairs.
Despite the remarkable advancements in machine translation, the current sentence-level paradigm faces challenges when dealing with highly-contextual languages like Japanese. In this paper, we explore how context-awareness can improve the performance of the current Neural Machine Translation (NMT) models for English-Japanese business dialogues translation, and what kind of context provides meaningful information to improve translation. As business dialogue involves complex discourse phenomena but offers scarce training resources, we adapted a pretrained mBART model, finetuning on multi-sentence dialogue data, which allows us to experiment with different contexts. We investigate the impact of larger context sizes and propose novel context tokens encoding extra-sentential information, such as speaker turn and scene type. We make use of Conditional Cross-Mutual Information (CXMI) to explore how much of the context the model uses and generalise CXMI to study the impact of the extra sentential context. Overall, we find that models leverage both preceding sentences and extra-sentential context (with CXMI increasing with context size) and we provide a more focused analysis on honorifics translation. Regarding translation quality, increased source-side context paired with scene and speaker information improves the model performance compared to previous work and our context-agnostic baselines, measured in BLEU and COMET metrics.
In the wake of responsible AI, interpretability methods, which attempt to provide an explanation for the predictions of neural models have seen rapid progress. In this work, we are concerned with explanations that are applicable to natural language processing (NLP) models and tasks, and we focus specifically on the analysis of counterfactual, contrastive explanations. We note that while there have been several explainers proposed to produce counterfactual explanations, their behaviour can vary significantly and the lack of a universal ground truth for the counterfactual edits imposes an insuperable barrier on their evaluation. We propose a new back translation-inspired evaluation methodology that utilises earlier outputs of the explainer as ground truth proxies to investigate the consistency of explainers. We show that by iteratively feeding the counterfactual to the explainer we can obtain valuable insights into the behaviour of both the predictor and the explainer models, and infer patterns that would be otherwise obscured. Using this methodology, we conduct a thorough analysis and propose a novel metric to evaluate the consistency of counterfactual generation approaches with different characteristics across available performance indicators.
This paper presents the results of the WMT23 Metrics Shared Task. Participants submitting automatic MT evaluation metrics were asked to score the outputs of the translation systems competing in the WMT23 News Translation Task. All metrics were evaluated on how well they correlate with human ratings at the system and segment level. Similar to last year, we acquired our own human ratings based on expert-based human evaluation via Multidimensional Quality Metrics (MQM). Following last year’s success, we also included a challenge set subtask, where participants had to create contrastive test suites for evaluating metrics’ ability to capture and penalise specific types of translation errors. Furthermore, we improved our meta-evaluation procedure by considering fewer tasks and calculating a global score by weighted averaging across the various tasks. We present an extensive analysis on how well metrics perform on three language pairs: Chinese-English, Hebrew-English on the sentence-level and English-German on the paragraph-level. The results strongly confirm the results reported last year, that neural-based metrics are significantly better than non-neural metrics in their levels of correlation with human judgments. Further, we investigate the impact of bad reference translations on the correlations of metrics with human judgment. We present a novel approach for generating synthetic reference translations based on the collection of MT system outputs and their corresponding MQM ratings, which has the potential to mitigate bad reference issues we observed this year for some language pairs. Finally, we also study the connections between the magnitude of metric differences and their expected significance in human evaluation, which should help the community to better understand and adopt new metrics.
We report the results of the WMT 2023 shared task on Quality Estimation, in which the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels, without access to reference translations. This edition introduces a few novel aspects and extensions that aim to enable more fine-grained, and explainable quality estimation approaches. We introduce an updated quality annotation scheme using Multidimensional Quality Metrics to obtain sentence- and word-level quality scores for three language pairs. We also extend the provided data to new language pairs: we specifically target low-resource languages and provide training, development and test data for English-Hindi, English-Tamil, English-Telegu and English-Gujarati as well as a zero-shot test-set for English-Farsi. Further, we introduce a novel fine-grained error prediction task aspiring to motivate research towards more detailed quality predictions.
Negation and uncertainty modeling are long-standing tasks in natural language processing. Linguistic theory postulates that expressions of negation and uncertainty are semantically independent from each other and the content they modify. However, previous works on representation learning do not explicitly model this independence. We therefore attempt to disentangle the representations of negation, uncertainty, and content using a Variational Autoencoder. We find that simply supervising the latent representations results in good disentanglement, but auxiliary objectives based on adversarial learning and mutual information minimization can provide additional disentanglement gains.
We report the results of the WMT 2022 shared task on Quality Estimation, in which the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels, without access to reference translations. This edition introduces a few novel aspects and extensions that aim to enable more fine-grained, and explainable quality estimation approaches. We introduce an updated quality annotation scheme using Multidimensional Quality Metrics to obtain sentence- and word-level quality scores for three language pairs. We also extend the Direct Assessments and post-edit data (MLQE-PE) to new language pairs: we present a novel and large dataset on English-Marathi, as well as a zero-shot test set on English-Yoruba. Further, we include an explainability sub-task for all language pairs and present a new format of a critical error detection task for two new language pairs. Participants from 11 different teams submitted altogether 991 systems to different task variants and language pairs.
In this paper, we present the joint contribution of Unbabel and IST to the WMT 2022 Metrics Shared Task. Our primary submission – dubbed COMET-22 – is an ensemble between a COMET estimator model trained with Direct Assessments and a newly proposed multitask model trained to predict sentence-level scores along with OK/BAD word-level tags derived from Multidimensional Quality Metrics error annotations. These models are ensembled together using a hyper-parameter search that weights different features extracted from both evaluation models and combines them into a single score. For the reference-free evaluation, we present CometKiwi. Similarly to our primary submission, CometKiwi is an ensemble between two models. A traditional predictor-estimator model inspired by OpenKiwi and our new multitask model trained on Multidimensional Quality Metrics which can also be used without references. Both our submissions show improved correlations compared to state-of-the-art metrics from last year as well as increased robustness to critical errors.
We present the joint contribution of IST and Unbabel to the WMT 2022 Shared Task on Quality Estimation (QE). Our team participated in all three subtasks: (i) Sentence and Word-level Quality Prediction; (ii) Explainable QE; and (iii) Critical Error Detection. For all tasks we build on top of the COMET framework, connecting it with the predictor-estimator architecture of OpenKiwi, and equipping it with a word-level sequence tagger and an explanation extractor. Our results suggest that incorporating references during pretraining improves performance across several language pairs on downstream tasks, and that jointly training with sentence and word-level objectives yields a further boost. Furthermore, combining attention and gradient information proved to be the top strategy for extracting good explanations of sentence-level QE models. Overall, our submissions achieved the best results for all three tasks for almost all language pairs by a considerable margin.
We present MLQE-PE, a new dataset for Machine Translation (MT) Quality Estimation (QE) and Automatic Post-Editing (APE). The dataset contains annotations for eleven language pairs, including both high- and low-resource languages. Specifically, it is annotated for translation quality with human labels for up to 10,000 translations per language pair in the following formats: sentence-level direct assessments and post-editing effort, and word-level binary good/bad labels. Apart from the quality-related scores, each source-translation sentence pair is accompanied by the corresponding post-edited sentence, as well as titles of the articles where the sentences were extracted from, and information on the neural MT models used to translate the text. We provide a thorough description of the data collection and annotation process as well as an analysis of the annotation distribution for each language pair. We also report the performance of baseline systems trained on the MLQE-PE dataset. The dataset is freely available and has already been used for several WMT shared tasks.
DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.
Trainable evaluation metrics for machine translation (MT) exhibit strong correlation with human judgements, but they are often hard to interpret and might produce unreliable scores under noisy or out-of-domain data. Recent work has attempted to mitigate this with simple uncertainty quantification techniques (Monte Carlo dropout and deep ensembles), however these techniques (as we show) are limited in several ways – for example, they are unable to distinguish between different kinds of uncertainty, and they are time and memory consuming. In this paper, we propose more powerful and efficient uncertainty predictors for MT evaluation, and we assess their ability to target different sources of aleatoric and epistemic uncertainty. To this end, we develop and compare training objectives for the COMET metric to enhance it with an uncertainty prediction output, including heteroscedastic regression, divergence minimization, and direct uncertainty prediction.Our experiments show improved results on uncertainty prediction for the WMT metrics task datasets, with a substantial reduction in computational costs. Moreover, they demonstrate the ability of these predictors to address specific uncertainty causes in MT evaluation, such as low quality references and out-of-domain data.
We report the results of the WMT 2021 shared task on Quality Estimation, where the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels. This edition focused on two main novel additions: (i) prediction for unseen languages, i.e. zero-shot settings, and (ii) prediction of sentences with catastrophic errors. In addition, new data was released for a number of languages, especially post-edited data. Participating teams from 19 institutions submitted altogether 1263 systems to different task variants and language pairs.
We present the joint contribution of IST and Unbabel to the WMT 2021 Shared Task on Quality Estimation. Our team participated on two tasks: Direct Assessment and Post-Editing Effort, encompassing a total of 35 submissions. For all submissions, our efforts focused on training multilingual models on top of OpenKiwi predictor-estimator architecture, using pre-trained multilingual encoders combined with adapters. We further experiment with and uncertainty-related objectives and features as well as training on out-of-domain direct assessment data.
In this paper, we present the joint contribution of Unbabel and IST to the WMT 2021 Metrics Shared Task. With this year’s focus on Multidimensional Quality Metric (MQM) as the ground-truth human assessment, our aim was to steer COMET towards higher correlations with MQM. We do so by first pre-training on Direct Assessments and then fine-tuning on z-normalized MQM scores. In our experiments we also show that reference-free COMET models are becoming competitive with reference-based models, even outperforming the best COMET model from 2020 on this year’s development data. Additionally, we present COMETinho, a lightweight COMET model that is 19x faster on CPU than the original model, while also achieving state-of-the-art correlations with MQM. Finally, in the “QE as a metric” track, we also participated with a QE model trained using the OpenKiwi framework leveraging MQM scores and word-level annotations.
Several neural-based metrics have been recently proposed to evaluate machine translation quality. However, all of them resort to point estimates, which provide limited information at segment level. This is made worse as they are trained on noisy, biased and scarce human judgements, often resulting in unreliable quality predictions. In this paper, we introduce uncertainty-aware MT evaluation and analyze the trustworthiness of the predicted quality. We combine the COMET framework with two uncertainty estimation methods, Monte Carlo dropout and deep ensembles, to obtain quality scores along with confidence intervals. We compare the performance of our uncertainty-aware MT evaluation methods across multiple language pairs from the QT21 dataset and the WMT20 metrics task, augmented with MQM annotations. We experiment with varying numbers of references and further discuss the usefulness of uncertainty-aware quality estimation (without references) to flag possibly critical translation mistakes.
Currently, news articles are produced, shared and consumed at an extremely rapid rate. Although their quantity is increasing, at the same time, their quality and trustworthiness is becoming fuzzier. Hence, it is important not only to automate information extraction but also to quantify the certainty of this information. Automated identification of certainty has been studied both in the scientific and newswire domains, but performance is considerably higher in tasks focusing on scientific text. We compare the differences in the definition and expression of uncertainty between a scientific domain, i.e., biomedicine, and newswire. We delve into the different aspects that affect the certainty of an extracted event in a news article and examine whether they can be easily identified by techniques already validated in the biomedical domain. Finally, we present a comparison of the syntactic and lexical differences between the the expression of certainty in the biomedical and newswire domains, using two annotated corpora.