Fine-tuning on instruction data has been widely validated as an effective practice for implementing chat language models like ChatGPT. Scaling the diversity and quality of such data, although straightforward, stands a great chance of leading to improved performance. This paper aims to push the upper bound of open-source models further. We first provide a systematically designed, diverse, informative, large-scale dataset of instructional conversations, UltraChat, which does not involve human queries. Our objective is to capture the breadth of interactions between a human user and an AI assistant and employs a comprehensive framework to generate multi-turn conversation iteratively. UltraChat contains 1.5 million high-quality multi-turn dialogues and covers a wide range of topics and instructions. Our statistical analysis of UltraChat reveals its superiority in various key metrics, including scale, average length, diversity, coherence, etc., solidifying its position as a leading open-source dataset. Building upon UltraChat, we fine-tune a LLaMA model to create a powerful conversational model, UltraLM. Our evaluations indicate that UltraLM consistently outperforms other open-source models, including WizardLM and Vicuna, the previously recognized state-of-the-art open-source models.
Fine-tuning pre-trained large language models in a parameter-efficient manner is widely studied for its effectiveness and efficiency. The popular method of low-rank adaptation (LoRA) offers a notable approach, hypothesizing that the adaptation process is intrinsically low-dimensional. Although LoRA has demonstrated commendable performance, it is implemented with a fixed and unalterable intrinsic rank that might not always be the ideal choice. Recognizing the need for more flexible adaptation, we extend the methodology of LoRA to an innovative approach we call sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process. We achieve this through the incorporation of a gate unit optimized with proximal gradient method in the training stage, controlling the cardinality of rank under the sparsity of the gate. In the subsequent inference stage, we eliminate the parameter blocks corresponding to the zeroed-out ranks, to reduce each SoRA module back to a concise yet rank-optimal LoRA. Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters via updating in a sparse way. We further introduce a sparsifying scheduler for SoRA, aiming to examine the impact of the number of non-zero parameters on the model’s memorization and generalization. Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
Instruction tuning has recently been recognized as an effective way of aligning Large Language Models (LLMs) to enhance their generalization ability across various tasks. However, when tuning publicly accessible, centralized LLMs with private instruction data, privacy concerns are inevitable. While direct transfer of parameterized modules between models is a plausible approach to address this, its implications and effectiveness need further exploration. This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators. Given the limited understanding of the underlying mechanism of OFT, we perform an empirical analysis on LLMs from the perspectives of representation and functional similarity. Interestingly, our findings reveal a unique modular structure within the layers of LLMs that appears to emerge as the model size expands. Simultaneously, we note subtle but potentially significant changes in representation and intermediate predictions across the layers. Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs. CRaSh significantly boosts performance of OFT with billions of parameters. Furthermore, we investigate the optimal solutions yielded by fine-tuning with and without full model through the lens of loss landscape. Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.
Recent work on aspect-level sentiment classification has demonstrated the efficacy of incorporating syntactic structures such as dependency trees with graph neural networks (GNN), but these approaches are usually vulnerable to parsing errors. To better leverage syntactic information in the face of unavoidable errors, we propose a simple yet effective graph ensemble technique, GraphMerge, to make use of the predictions from different parsers. Instead of assigning one set of model parameters to each dependency tree, we first combine the dependency relations from different parses before applying GNNs over the resulting graph. This allows GNN models to be robust to parse errors at no additional computational cost, and helps avoid overparameterization and overfitting from GNN layer stacking by introducing more connectivity into the ensemble graph. Our experiments on the SemEval 2014 Task 4 and ACL 14 Twitter datasets show that our GraphMerge model not only outperforms models with single dependency tree, but also beats other ensemble models without adding model parameters.
Keyphrases, that concisely summarize the high-level topics discussed in a document, can be categorized into present keyphrase which explicitly appears in the source text and absent keyphrase which does not match any contiguous subsequence but is highly semantically related to the source. Most existing keyphrase generation approaches synchronously generate present and absent keyphrases without explicitly distinguishing these two categories. In this paper, a Select-Guide-Generate (SGG) approach is proposed to deal with present and absent keyphrases generation separately with different mechanisms. Specifically, SGG is a hierarchical neural network which consists of a pointing-based selector at low layer concentrated on present keyphrase generation, a selection-guided generator at high layer dedicated to absent keyphrase generation, and a guider in the middle to transfer information from selector to generator. Experimental results on four keyphrase generation benchmarks demonstrate the effectiveness of our model, which significantly outperforms the strong baselines for both present and absent keyphrases generation. Furthermore, we extend SGG to a title generation task which indicates its extensibility in natural language generation tasks.
The copying mechanism has had considerable success in abstractive summarization, facilitating models to directly copy words from the input text to the output summary. Existing works mostly employ encoder-decoder attention, which applies copying at each time step independently of the former ones. However, this may sometimes lead to incomplete copying. In this paper, we propose a novel copying scheme named Correlational Copying Network (CoCoNet) that enhances the standard copying mechanism by keeping track of the copying history. It thereby takes advantage of prior copying distributions and, at each time step, explicitly encourages the model to copy the input word that is relevant to the previously copied one. In addition, we strengthen CoCoNet through pre-training with suitable corpora that simulate the copying behaviors. Experimental results show that CoCoNet can copy more accurately and achieves new state-of-the-art performances on summarization benchmarks, including CNN/DailyMail for news summarization and SAMSum for dialogue summarization. The code and checkpoint will be publicly available.
Recent work on aspect-level sentiment classification has employed Graph Convolutional Networks (GCN) over dependency trees to learn interactions between aspect terms and opinion words. In some cases, the corresponding opinion words for an aspect term cannot be reached within two hops on dependency trees, which requires more GCN layers to model. However, GCNs often achieve the best performance with two layers, and deeper GCNs do not bring any additional gain. Therefore, we design a novel selective attention based GCN model. On one hand, the proposed model enables the direct interaction between aspect terms and context words via the self-attention operation without the distance limitation on dependency trees. On the other hand, a top-k selection procedure is designed to locate opinion words by selecting k context words with the highest attention scores. We conduct experiments on several commonly used benchmark datasets and the results show that our proposed SA-GCN outperforms strong baseline models.
Existing pre-trained language models (PLMs) have demonstrated the effectiveness of self-supervised learning for a broad range of natural language processing (NLP) tasks. However, most of them are not explicitly aware of domain-specific knowledge, which is essential for downstream tasks in many domains, such as tasks in e-commerce scenarios. In this paper, we propose K-PLUG, a knowledge-injected pre-trained language model based on the encoder-decoder transformer that can be transferred to both natural language understanding and generation tasks. Specifically, we propose five knowledge-aware self-supervised pre-training objectives to formulate the learning of domain-specific knowledge, including e-commerce domain-specific knowledge-bases, aspects of product entities, categories of product entities, and unique selling propositions of product entities. We verify our method in a diverse range of e-commerce scenarios that require domain-specific knowledge, including product knowledge base completion, abstractive product summarization, and multi-turn dialogue. K-PLUG significantly outperforms baselines across the board, which demonstrates that the proposed method effectively learns a diverse set of domain-specific knowledge for both language understanding and generation tasks. Our code is available.
Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chunks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).
Human conversations are complicated and building a human-like dialogue agent is an extremely challenging task. With the rapid development of deep learning techniques, data-driven models become more and more prevalent which need a huge amount of real conversation data. In this paper, we construct a large-scale real scenario Chinese E-commerce conversation corpus, JDDC, with more than 1 million multi-turn dialogues, 20 million utterances, and 150 million words. The dataset reflects several characteristics of human-human conversations, e.g., goal-driven, and long-term dependency among the context. It also covers various dialogue types including task-oriented, chitchat and question-answering. Extra intent information and three well-annotated challenge sets are also provided. Then, we evaluate several retrieval-based and generative models to provide basic benchmark performance on the JDDC corpus. And we hope JDDC can serve as an effective testbed and benefit the development of fundamental research in dialogue task.
Copy module has been widely equipped in the recent abstractive summarization models, which facilitates the decoder to extract words from the source into the summary. Generally, the encoder-decoder attention is served as the copy distribution, while how to guarantee that important words in the source are copied remains a challenge. In this work, we propose a Transformer-based model to enhance the copy mechanism. Specifically, we identify the importance of each source word based on the degree centrality with a directed graph built by the self-attention layer in the Transformer. We use the centrality of each source word to guide the copy process explicitly. Experimental results show that the self-attention graph provides useful guidance for the copy distribution. Our proposed models significantly outperform the baseline methods on the CNN/Daily Mail dataset and the Gigaword dataset.
Distance-based knowledge graph embeddings have shown substantial improvement on the knowledge graph link prediction task, from TransE to the latest state-of-the-art RotatE. However, complex relations such as N-to-1, 1-to-N and N-to-N still remain challenging to predict. In this work, we propose a novel distance-based approach for knowledge graph link prediction. First, we extend the RotatE from 2D complex domain to high dimensional space with orthogonal transforms to model relations. The orthogonal transform embedding for relations keeps the capability for modeling symmetric/anti-symmetric, inverse and compositional relations while achieves better modeling capacity. Second, the graph context is integrated into distance scoring functions directly. Specifically, graph context is explicitly modeled via two directed context representations. Each node embedding in knowledge graph is augmented with two context representations, which are computed from the neighboring outgoing and incoming nodes/edges respectively. The proposed approach improves prediction accuracy on the difficult N-to-1, 1-to-N and N-to-N cases. Our experimental results show that it achieves state-of-the-art results on two common benchmarks FB15k-237 and WNRR-18, especially on FB15k-237 which has many high in-degree nodes.
In this work, we present a model to generate e-commerce product summaries. The consistency between the generated summary and the product attributes is an essential criterion for the ecommerce product summarization task. To enhance the consistency, first, we encode the product attribute table to guide the process of summary generation. Second, we identify the attribute words from the vocabulary, and we constrain these attribute words can be presented in the summaries only through copying from the source, i.e., the attribute words not in the source cannot be generated. We construct a Chinese e-commerce product summarization dataset, and the experimental results on this dataset demonstrate that our models significantly improve the faithfulness.
This paper aims to enhance the few-shot relation classification especially for sentences that jointly describe multiple relations. Due to the fact that some relations usually keep high co-occurrence in the same context, previous few-shot relation classifiers struggle to distinguish them with few annotated instances. To alleviate the above relation confusion problem, we propose CTEG, a model equipped with two novel mechanisms to learn to decouple these easily-confused relations. On the one hand, an Entity -Guided Attention (EGA) mechanism, which leverages the syntactic relations and relative positions between each word and the specified entity pair, is introduced to guide the attention to filter out information causing confusion. On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations by playing a pushing-away game between classifying a sentence into a true relation and its confusing relation. Extensive experiments are conducted on the FewRel dataset, and the results show that our proposed model achieves comparable and even much better results to strong baselines in terms of accuracy. Furthermore, the ablation test and case study verify the effectiveness of our proposed EGA and CAT, especially in addressing the relation confusion problem.
Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product recommendations, and product retrieval. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we propose a multimodal method to jointly predict product attributes and extract values from textual product descriptions with the help of the product images. We argue that product attributes and values are highly correlated, e.g., it will be easier to extract the values on condition that the product attributes are given. Thus, we jointly model the attribute prediction and value extraction tasks from multiple aspects towards the interactions between attributes and values. Moreover, product images have distinct effects on our tasks for different product attributes and values. Thus, we selectively draw useful visual information from product images to enhance our model. We annotate a multimodal product attribute value dataset that contains 87,194 instances, and the experimental results on this dataset demonstrate that explicitly modeling the relationship between attributes and values facilitates our method to establish the correspondence between them, and selectively utilizing visual product information is necessary for the task. Our code and dataset are available at https://github.com/jd-aig/JAVE.
Multi-hop reading comprehension (RC) across documents poses new challenge over single-document RC because it requires reasoning over multiple documents to reach the final answer. In this paper, we propose a new model to tackle the multi-hop RC problem. We introduce a heterogeneous graph with different types of nodes and edges, which is named as Heterogeneous Document-Entity (HDE) graph. The advantage of HDE graph is that it contains different granularity levels of information including candidates, documents and entities in specific document contexts. Our proposed model can do reasoning over the HDE graph with nodes representation initialized with co-attention and self-attention based context encoders. We employ Graph Neural Networks (GNN) based message passing algorithms to accumulate evidences on the proposed HDE graph. Evaluated on the blind test set of the Qangaroo WikiHop data set, our HDE graph based single model delivers competitive result, and the ensemble model achieves the state-of-the-art performance.
Machine reading comprehension (MRC) has attracted significant amounts of research attention recently, due to an increase of challenging reading comprehension datasets. In this paper, we aim to improve a MRC model’s ability to determine whether a question has an answer in a given context (e.g. the recently proposed SQuAD 2.0 task). The relation module consists of both semantic extraction and relational information. We first extract high level semantics as objects from both question and context with multi-head self-attentive pooling. These semantic objects are then passed to a relation network, which generates relationship scores for each object pair in a sentence. These scores are used to determine whether a question is non-answerable. We test the relation module on the SQuAD 2.0 dataset using both the BiDAF and BERT models as baseline readers. We obtain 1.8% gain of F1 accuracy on top of the BiDAF reader, and 1.0% on top of the BERT base model. These results show the effectiveness of our relation module on MRC.
We study few-shot learning in natural language domains. Compared to many existing works that apply either metric-based or optimization-based meta-learning to image domain with low inter-task variance, we consider a more realistic setting, where tasks are diverse. However, it imposes tremendous difficulties to existing state-of-the-art metric-based algorithms since a single metric is insufficient to capture complex task variations in natural language domain. To alleviate the problem, we propose an adaptive metric learning approach that automatically determines the best weighted combination from a set of metrics obtained from meta-training tasks for a newly seen few-shot task. Extensive quantitative evaluations on real-world sentiment analysis and dialog intent classification datasets demonstrate that the proposed method performs favorably against state-of-the-art few shot learning algorithms in terms of predictive accuracy. We make our code and data available for further study.
Relation detection is a core component of many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning which detects KB relations given an input question. Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different levels of abstraction. Additionally, we propose a simple KBQA system that integrates entity linking and our proposed relation detector to make the two components enhance each other. Our experimental results show that our approach not only achieves outstanding relation detection performance, but more importantly, it helps our KBQA system achieve state-of-the-art accuracy for both single-relation (SimpleQuestions) and multi-relation (WebQSP) QA benchmarks.
Question classification is an important task with wide applications. However, traditional techniques treat questions as general sentences, ignoring the corresponding answer data. In order to consider answer information into question modeling, we first introduce novel group sparse autoencoders which refine question representation by utilizing group information in the answer set. We then propose novel group sparse CNNs which naturally learn question representation with respect to their answers by implanting group sparse autoencoders into traditional CNNs. The proposed model significantly outperform strong baselines on four datasets.
How to model a pair of sentences is a critical issue in many NLP tasks such as answer selection (AS), paraphrase identification (PI) and textual entailment (TE). Most prior work (i) deals with one individual task by fine-tuning a specific system; (ii) models each sentence’s representation separately, rarely considering the impact of the other sentence; or (iii) relies fully on manually designed, task-specific linguistic features. This work presents a general Attention Based Convolutional Neural Network (ABCNN) for modeling a pair of sentences. We make three contributions. (i) The ABCNN can be applied to a wide variety of tasks that require modeling of sentence pairs. (ii) We propose three attention schemes that integrate mutual influence between sentences into CNNs; thus, the representation of each sentence takes into consideration its counterpart. These interdependent sentence pair representations are more powerful than isolated sentence representations. (iii) ABCNNs achieve state-of-the-art performance on AS, PI and TE tasks. We release code at: https://github.com/yinwenpeng/Answer_Selection.
This work focuses on answering single-relation factoid questions over Freebase. Each question can acquire the answer from a single fact of form (subject, predicate, object) in Freebase. This task, simple question answering (SimpleQA), can be addressed via a two-step pipeline: entity linking and fact selection. In fact selection, we match the subject entity in a fact candidate with the entity mention in the question by a character-level convolutional neural network (char-CNN), and match the predicate in that fact with the question by a word-level CNN (word-CNN). This work makes two main contributions. (i) A simple and effective entity linker over Freebase is proposed. Our entity linker outperforms the state-of-the-art entity linker over SimpleQA task. (ii) A novel attentive maxpooling is stacked over word-CNN, so that the predicate representation can be matched with the predicate-focused question representation more effectively. Experiments show that our system sets new state-of-the-art in this task.
In this paper, we propose a new method for training translation rules for a Synchronous Context-free Grammar. A bilingual chart parser is used to generate the parse forest, and EM algorithm to estimate expected counts for each rule of the ruleset. Additional rules are constructed as combinations of reliable rules occurring in the parse forest. The new method of proposing additional translation rules is independent of word alignments. We present the theoretical background for this method, and initial experimental results on German-English translations of Europarl data.