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Abstract

In this work we introduce dual conditional
cross-entropy filtering for noisy parallel data.
For each sentence pair of the noisy parallel cor-
pus we compute cross-entropy scores accord-
ing to two inverse translation models trained
on clean data. We penalize divergent cross-
entropies and weigh the penalty by the cross-
entropy average of both models. Sorting or
thresholding according to these scores results
in better subsets of parallel data. We achieve
higher BLEU scores with models trained on
parallel data filtered only from Paracrawl than
with models trained on clean WMT data. We
further evaluate our method in the context of
the WMT2018 shared task on parallel corpus
filtering and achieve the overall highest rank-
ing scores of the shared task, scoring top in
three out of four subtasks.

1 Introduction

Recently, large web-crawled parallel corpora which
are meant to rival non-public resources held by
popular machine translation providers have been
made publicly available to the research community
in form of the Paracrawl corpus.1 At the same time,
it has been shown that neural translation models
are far more sensitive to noisy parallel training data
than phrase-based statistical machine translation
methods (Khayrallah and Koehn, 2018; Belinkov
and Bisk, 2017). This creates the need for data
selection methods that can filter harmful sentence
pairs from these large resources.

In this paper, we introduce dual conditional
cross-entropy filtering, a simple but effective data
selection method for noisy parallel corpora. We
think of it as the missing adequacy component to
the fluency aspects of cross-entropy difference fil-
tering by Moore and Lewis (2010). Similar to
Moore-Lewis filtering for monolingual data, we

1https://paracrawl.eu

directly select samples that have the potential to
improve perplexity (and in our case translation per-
formance) of models trained with the filtered data.

This is different from Axelrod et al. (2011) who
simply expand Moore and Lewis filtering to both
sides of the parallel corpus. We use conditional
probability distributions and enforce agreement be-
tween inverse translation directions.

In most cases, neural translation models are
trained to minimize perplexity (or cross-entropy)
on a training set. Our selection criterion includes
the optimization criterion of neural machine trans-
lation which we approximate by using neural trans-
lation models pre-trained on clean seed data.

We evaluated our method in the context of the
WMT2018 Shared Task on Parallel Corpus Filter-
ing (Koehn et al., 2018) and submitted our best
method to the task. Although we only optimized
for one of the four subtasks of the shared task, our
submission scored highest for three out of four sub-
tasks and third for the fourth subtask; there were
48 submissions to each subtask in total.

2 WMT 2018 shared task on parallel
corpus filtering

We quote the shared task description provided by
the organizers on the task website2 and add cita-
tions where appropriate: The organizers “provide
a very noisy 1 billion word (English token count)
German-English corpus crawled from the web as
part of the Paracrawl project” and “ask partici-
pants to subselect sentence pairs that amount to
(a) 100 million words, and (b) 10 million words.
The quality of the resulting subsets is determined
by the quality of a statistical machine translation
— Moses, phrase-based (Koehn et al., 2007) —
and a neural machine translation system — Mar-

2http://www.statmt.org/wmt18/
parallel-corpus-filtering.html
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ian (Junczys-Dowmunt et al., 2018) — trained on
this data.” The organizers note that the task is
meant to address “the challenge of data quality and
not domain-relatedness of the data for a particular
use case.” They discourage participants from sub-
sampling the corpus for relevance to the news do-
main and announce that more emphasis will be put
on undisclosed test sets rather than the WMT2018
test set.

Furthermore the organizers remark that “the pro-
vided raw parallel corpus is the outcome of a pro-
cessing pipeline that aimed from high recall at the
cost of precision, so it is very noisy. It exhibits
noise of all kinds (wrong language in source and
target, sentence pairs that are not translations of
each other, bad language, incomplete or bad trans-
lations, etc.)” It is allowed to use the 2018 news
translation task data for German-English (without
the Paracrawl parallel corpus) to train components
of our methods.

2.1 Sub-sampling based on submitted scores
Participants submit files with numerical scores, one
score per line of the original unfiltered parallel cor-
pus. A tool provided by the organizers takes as in-
put the scores and the German and English corpus
halves in form of raw text. Higher scores are better.
The tool first determines at which best thresholds
10M and 100M words can be collected and next
creates two data sets containing all sentences with
scores above the two selected respective thresholds.
Systems trained on these data sets are used for eval-
uation by the organizers (4 systems per submission)
and for development purposes by task participants.

We focus on the 100M sub-task for neural ma-
chine translation systems as this is closest to our
interests of finding as much relevant data as possi-
ble in large noisy parallel corpora. We only develop
systems for this scenario.

2.2 Neural machine translation evaluation
As required by the shared task, we use Marian
(Junczys-Dowmunt et al., 2018) to train our de-
velopment systems. We follow the recommended
settings quite closely in terms of model architec-
ture, but change training settings, favoring hyper-
parameters that lead to quicker convergence dur-
ing our own development phase. We switched
off synchronous ADAM in favor of asynchronous
ADAM, increased the evaluation frequency to once
per 5000 updates and increased work-space size to
5000MB per GPU. We also set the initial learning-

rate to 0.0003 instead of 0.0001 and used an inverse
square-root decaying scheme for the learning rate
(Vaswani et al., 2017) that started after 16,000 up-
dates. We removed dropout of source and target
words and decreased variational dropout from 0.2
to 0.1 (Gal and Ghahramani, 2016). With these set-
tings, our models usually converged within 10 to
15 hours of training on four NVidia Titan Xp GPUs.
Convergence was assumed if perplexity did not im-
prove for 5 consecutive evaluation steps. We eval-
uated on the provided WMT2016 and WMT2017
test sets.

3 Scores and experiments

We produce a single score f(x, y) per sentence pair
(x, y) as the product of partial scores fi(x, y):

f(x, y) =
∏
i

fi(x, y). (1)

Partial scores take values between 0 and 1, as
does the total score f . Partial scores that might
generate values outside that range are clipped. We
assume that sentence pairs with a score of 0 are
excluded from the training data.3

In this section, we describe the scores explored
in this work and present results on the development
data.

3.1 Experimental baselines

Following the training recipe in Section 2.2, we
first trained a model (“WMT18-full” in Table 2) on
the admissible parallel WMT18 data for German-
English (excluding Paracrawl). This model is
only used for the computation of reference BLEU
scores.

Next, we trained a German-English model on
randomly scored Paracrawl data only (“random” in
Table 2). The random scores – uniformly sampled
values between 0 and 1 – were used to select rep-
resentative data consisting of 100M words from
unprocessed Paracrawl while using the threshold-
based selection tool provided by the shared task
organizers. Results for WMT16 and WMT17 test
sets for both systems are shown in Table 2. The
Paracrawl-trained systems (random) has dramati-
cally worse BLEU scores than the WMT18-trained
system. Upon manual inspection, we see many

3This is only guaranteed by the selection algorithm of the
shared task if more than 100M words appear in sentence pairs
scored with non-zero scores. However, we did not encounter
situations where we got close or below that boundary.



Model Description

Wen RNN language model trained on 1M
sentences from English WMT mono-
lingual news data 2015-2017

Pen RNN language model trained on 1M
sentences from target (English) side
of Paracrawl

Wde→en German-English translation model
trained on WMT parallel data

Wen→de English-German translation model
trained on WMT parallel data

Wde↔en Translation model trained on union
of German-English and English-
German WMT parallel data

Table 1: Helper models trained for various scorers.
All models are neural models, we do not use n-
gram or phrase-based models. WMT parallel data
excludes Paracrawl data.

untranslated and partially copied sentences in the
case of the randomly-selected Paracrawl system.

3.2 Language identification

We noticed that the provided sentence pairs do not
seem to have been subjected to language identifica-
tion and simply used the Python langid package
to assign a language code to each sentence in a
sentence pair. We did not restrict the inventory of
languages beforehand as we wanted the tool to pro-
pose a language if that language wins against all
other candidates. We only accepted sentence pairs
where both elements of a pair had been assigned
the desired languages (German for source, English
for target). The result is our first non-trivial score:

lang(x, l) =

{
1 if LANGID(x) = l
0 otherwise

de-en(x, y) = lang(x, “de”) · lang(y, “en”) (2)

This is a very harsh but also very effective filter
that removes nearly 70% of the parallel sentence
candidates. As a beneficial side-effect of language
identification many language-ambiguous fragments
which contain only little textual information are dis-
carded, e.g. sentences with lots of numbers, punc-
tuation marks or other non-letter characters. The

identification tool gets confused by the non-textual
content and selects a random language.

We combined the de-en(x, y) filter with the ran-
dom scores and trained a corresponding system
(de-en·random). As we see in Table 2, this strongly
improved the results on both dev sets. When re-
viewing the translated development sets, we did
not see any copied/untranslated sentences in the
output.

3.3 Dual conditional cross-entropy filtering

The scoring method introduced in this section is
our main contribution. While inspired by cross-
entropy difference filtering for monolingual data
(Moore and Lewis, 2010), our method does not aim
for monolingual domain-selection effects. Instead
we try to model a bilingual adequacy score.

Moore and Lewis (see next section) quantify the
directed disagreement (signed difference) of sim-
ilar distributions (two language models over the
same language) trained on dissimilar data (differ-
ent monolingual corpora). A stronger degree of
separation between the two models indicates more
interesting data.

In contrast, we try to find maximal symmetric
agreement (minimal absolute difference) of dis-
similar distributions (two translation models over
inverse translation directions) trained on the same
data (same parallel corpus). Concretely, for a sen-
tence pair (x, y) we calculate a score:

|HA(y|x)−HB(x|y)|

+
1

2
(HA(y|x) +HB(x|y))

(3)

where A and B are translation models trained on
the same data but in inverse directions, and HM (·|·)
is the word-normalized conditional cross-entropy
of the probability distribution PM (·|·) for a model
M :

HM (y|x) =− 1

|y|
logPM (y|x)

=− 1

|y|

|y|∑
t=1

logPM (yt|y<t, x).

The score (denoted as dual conditional
cross-entropy) has two components with
different functions: the absolute difference
|HA(y|x)−HB(x|y)| measures the agreement
between the two conditional probability distribu-
tions, assuming that (word-normalized) translation



probabilities of sentence pairs in both directions
should be roughly equal. We want disagreement to
be low, hence this value should be close to 0.

However, a translation pair that is judged to be
equally improbable by both models will also have
a low disagreement score. Therefore we weight the
agreement score by the average word-normalized
cross-entropy from both models. Improbable sen-
tence pairs will have higher average cross-entropy
values.

This score is also quite similar to the dual learn-
ing training criterion from He et al. (2016) and
Hassan et al. (2018). The dual learning criterion
is formulated in terms of joint probabilities, later
decomposed into translation model and language
model probabilities. In practice, the influence of
the language models is strongly scaled down which
results in a form more similar to our score.

While Moore and Lewis filtering requires an in-
domain data set and a non-domain-specific data set
to create helper models, we require a clean, rela-
tive high-quality parallel corpus to train the two
dual translation models. We sample 1M sentences
from WMT parallel data excluding Paracrawl and
train Nematus-style translation models Wde→en

and Wen→de (see Table 1).
Formula (3) produces only positive values with

0 being the best possible score. We turn it into a
partial score with values between 0 and 1 (1 being
best) by negating and exponentiating, setting A =
Wde→en and B = Wen→de:

adq(x, y) = exp(−(|HA(y|x)−HB(x|y)|

+
1

2
(HA(y|x) +HB(x|y)))).

Combining the adq filter with the de-en filter
results in a promising NMT system (de-en · adq in
Table 2) trained on Paracrawl alone that beats the
BLEU scores of the pure-WMT baseline.

We further evaluated three ablative systems:

• we omitted the language id filter (no de-en)
which resulted in a system worse than ran-
domly selected. This is not too surprising as
we would expect many identical strings to be
selected as highly adequate;
• we dropped the absolute difference from for-

mula (3) which decreased BLEU by about 1
point;
• we removed the weighting by the averaged

cross-entropies from formula (3), loosing
about 3 BLEU points.

This seems to indicate that the two components of
the dual conditional cross-entropy filter are indeed
useful and that we have a practical scoring method
for parallel data.

3.4 Cross-entropy difference filtering

When inspecting the training data generated with
the above methods we saw many fragments that
looked like noisy or not particularly useful data.
This included concatenated lists of dates, series
of punctuation marks or simply not well-formed
text. Due to the adequacy filtering, the noise was
at least adequate, i.e. similar or identical on both
sides and mostly correctly translated if applicable.
The language filter had made sure that only few
fully identical pairs of fragments had remained.

However, we preferred to have a training corpus
that also looked like clean data. To achieve this we
treated cross-entropy filtering proposed by Moore
and Lewis (2010) as another score. Cross-entropy
filtering or Moore-Lewis filtering uses the quantity

HI(x)−HN (x) (4)

where I is an in-domain model, N is a non-domain-
specific model and HM is the word-normalized
cross-entropy of a probability distribution PM de-
fined by a model M :

HM (x) =− 1

|x|
logPM (x)

=− 1

|x|

|x|∑
t=1

logPM (xt|x<t).

Sentences scored with this method and selected
when their score is below a chosen threshold are
likely to be more in-domain according to model
I and less similar to data used to train N than
sentences above that threshold.

We chose WMT English news data from the
years 2015-2017 as our in-domain, clean language
model data and sampled 1M sentences to train
model I = Wen. We sampled 1M sentences from
Paracrawl without any previously applied filtering
to produce N = Pen. The shared task organizers
encourage submitting teams to not optimize for
a specific domain, but it has been our experience
that news data is quite general and clean data beats
noisy data on many domains.

To create a partial score for which the best sen-
tence pairs produce a 1 and the worst at 0, we apply
a number of transformations. First, we negate and



exponentiate cross-entropy difference arriving at a
quotient of perplexities of the target sentence y (x
is ignored):

dom′(x, y) = exp(−(HI(y)−HN (y)))

=
PPN (y)

PPI(y)
.

This score has the nice intuitive interpretation of
how many times sentence y is less perplexing to the
in-domain model Wen than to the out-of-domain
model Pen.

We further clip the maximum value of the score
to 1 (the minimum value is already 0) as:

dom(x, y) = min(dom′(x, y), 1). (5)

This seems counterintuitive at first, but is done
to avoid that a high monolingual in-domain score
strongly overrides bilingual adequacy; we are fine
with low in-domain scores penalizing sentence
pairs. This is a precision-recall trade-off for ad-
equacy and we prefer precision.

Finally, we also propose a cut-off value c as a
parameter:

cut(x, c) =

{
x if x ≥ c
0 otherwise

domc(x, y) = cut(dom(x, y), c). (6)

Parameter c can be used to completely eliminate
sentence pairs, regardless of other scores, if y is less
than c times more perplexing to the out-of-domain
model than to the in-domain model, or inversely
1/c times more perplexing to the in-domain model
than the out-of-domain model. This seems useful if
we want a hard noise-filter similar to the language-
id filter described above.

We used the domain filter only in combination
with the previously introduced filters. In Table 2,
we can observe that any variant leads to small im-
provements of the model over variants without the
dom filters. This is expected as we optimized for
WMT news development sets. We experimented
with three cut-off values: 0.00 (no cut-off), 0.25
and 0.50, reaching the highest BLEU scores for a
cut-off value c = 0.25. This best result (bold in Ta-
ble 2) was submitted to the shared task organizers
as our only submission.

Future work should consider bilingual cross-
entropy difference filtering as proposed by Axelrod
et al. (2011) where both sides of the corpus undergo

Filter test16 test17

WMT18-full 33.9 29.0
random 16.2 14.1

de-en·random 26.6 23.3

de-en·adq 35.1 30.2
- no de-en 15.4 12.7
- no absolute difference 33.8 29.3
- no CE weighting 31.7 27.4

de-en·adq·dom0.00 35.5 30.5
de-en·adq·dom0.25 36.0 31.0
de-en·adq·dom0.50 35.4 30.6

de-en·sim 34.5 29.6
de-en·sim·dom0.25 35.5 30.6
de-en·adq·sim·dom0.25 35.5 30.7

Table 2: Results on development data. We only
train neural models for the 100M sub-task. We did
not optimize for any of the other three sub-tasks.

the selection process or experiment with condi-
tional probability distributions (translation models)
for domain filtering.

3.5 Cosine similarity of sentence embeddings
We further experimented with sentence embedding
similarity to contrast this method with our cross-
entropy based approach. Recently, Hassan et al.
(2018) and Schwenk (2018) used cosine similari-
ties of sentence embeddings in a common multi-
lingual space to select translation pairs for neural
machine translation. Both these approaches rely on
creating a multi-lingual translation model across all
available translation directions and then using the
accumulated encoder representations (after sum-
ming or max-pooling contextual word-level embed-
dings across the time dimension) of sentences in a
pair to compute similarity scores.

Following Hassan et al. (2018), we train a new
multi-lingual translation model on WMT18 paral-
lel data (excluding Paracrawl) by joining German-
English and English-German training data into a
mixed-direction training set (see model Wde↔en in
Table 1). For a given sentence x, we create its sen-
tence embedding vector sx according to translation
model Wde↔en by collecting encoder representa-
tion vectors h1 to h|x|

h1:|x| = EncoderWde↔en
(x) (7)

which are then averaged to form a single vector



System Avg-BLEU

RWTH Neural Redund. 24.58
RWTH Neural Indep. 24.53
Our submission 24.45
AliMT Mix 24.11
AliMT Mix-div 24.11

(a) SMT 10M

System Avg-BLEU

Our submission 26.50
AliMT Mix 26.44
AliMT Mix-div 26.42
Prompsit Active 26.41
NRC yisi-bicov 26.40

(b) SMT 100M

System Avg-BLEU

Our submission 28.62
RWTH Neural Redund. 28.01
RWTH Neural Indep. 28.00
Speechmatics best 27.97
Speechmatics prime 27.88

(c) NMT 10M

System Avg-BLEU

Our submission 32.05
AliMT Mix 31.93
AliMT Mix-div 31.92
NRC yisi-bicov 31.88
NRC yisi 31.76

(d) NMT 100M

System Avg-BLEU

Our submission 111.63
RWTH Neural Redundancy 110.09
AliMT Mix 110.07
AliMT Mix-div 110.05
RWTH Neural Independent 109.91

(e) Sum of all sub-tasks

Table 3: Top-5 out of 48 submissions for each of the four sub-tasks and total sum

representation

sx =
1

|x|

|x|∑
t=1

ht. (8)

For a given sentence pair (x, y) we compute the
cosine similarity of sx and sy as

sim(x, y) = cos(]sxsy) =
sx · sy
|sx||sy|

. (9)

Since the model has seen both languages, English
and German, as source data it can produce use-
ful sentence representations of both sentences in a
translation pair. Unlike Hassan et al. (2018), we did
not define a cut-off value for the similarity score
as the threshold-based selection method of shared-
task tool computes its own cut-off thresholds.

We ran two experiments with the similarity
based scores, evaluating configurations de-en·sim
and de-en·adq·sim·dom0.25. The first one corre-
sponds to de-en·adq and we compare the effec-
tivness of the adq and sim filters after the appli-
cation of the language-id-based filter de-en. We

see in Table 2 that while de-en·sim leads to im-
provements over the language-filtered randomly
selected Paracrawl data, it is significantly worse
than de-en·adq on both development sets. Inter-
estingly, even when combined with our best scor-
ing scheme (de-en·adq·dom0.25) resulting in de-
en·adq·sim·dom0.25 we see a slight degradation.
Based on these results, we do not use the similarity
scores for our submission.

In future experiments we want to use the multi-
lingual model Wde↔en instead of the two mod-
els Wen→de and Wde→en for our dual conditional
cross-entropy method from Section 3.3. A multi-
lingual model does not only have a common en-
coder, but also a common probability distribution
for both languages which might lead to better agree-
ment of the conditional cross-entropies.

4 Shared task results

As mentioned before, we submitted only our single-
best set of scores de-en·adq·dom0.25 to the shared
task. The shared task organizers trained four sys-



tems with each set of submitted scores, two Moses
SMT (Koehn et al., 2007) systems on the best 10M
and 100M words corpora and two neural Marian
NMT systems on the same sets.

Based on the spread-sheet made available by
the organizers, 48 sets of scores where submitted.
Each set of scores was evaluated using the four
mentioned models on 6 different test sets (newstest
2018, iwslt 2017, Acquis, EMEA, Global Voices,
KDE). This required the organizers to train nearly
200 separate models; an effort that should be ap-
plauded.

It seems that systems are ranked by their aver-
age score across these test sets and sub-tasks. In
Table 3 we selected the top-5 system across each
sub-task for the purpose of this paper. The shared
task overview will likely include a more thorough
analysis. We place highest out of 48 submissions in
three out of four tasks (SMT 100M, NMT 10M and
NMT 100M) and third out of 48 for sub-task SMT
10M. The systems are packed quite closely, but the
overall total across all four tasks shows, that we
accumulate a slightly larger margin over the next
best systems while the next four systems barely
differ. This result is better than we expected as we
only optimized for the NMT 100M task.

For more details on the evaluation process and
conclusions see the shared task overview paper
Koehn et al. (2018).

5 Future work and discussion

We introduced dual conditional cross-entropy fil-
tering for noisy parallel data and combined this
filtering with multiple other noise filtering meth-
ods. Our submission to the WMT 2018 shared task
on parallel corpus filtering achieved the highest
overall rank and scored best in three out of four
subtasks while scoring third in the fourth subtask.
Each subtask had 48 participants.

We believe this positive effect is rooted in the
idea of directly asking a model that is very simi-
lar to the to-be-trained model which data it prefers
(weighting by cross-entropy) while also constrain-
ing its answer with the introduced disagreement
penalty. Our selection criterion is also very close
to the optimization criterion used during NMT
training, especially the dual learning training cri-
terion. Other methods, for instance the evaluated
similarity-based methods, do not have this direct
connection to the training process.

Future work should concentrate on further for-

malizing this method. We should analyze the con-
nection to the dual learning training criterion on
experiments whether models that were trained with
this criterion are also better candidates for sen-
tences scoring. Furthermore, the models we used
for scoring were trained on small subsamples of
clean data, we should investigate if stronger transla-
tion and language models are better discriminators.
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