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Abstract

We extend the arc-hybrid transition system
for dependency parsing with a SWAP tran-
sition that enables reordering of the words
and construction of non-projective trees.
Although this extension potentially breaks
the arc-decomposability of the transition
system, we show that the existing dynamic
oracle can be modified and combined with
a static oracle for the SWAP transition. Ex-
periments on five languages with differ-
ent degrees of non-projectivity show that
the new system gives competitive accuracy
and is significantly better than a system
trained with a purely static oracle.

1 Introduction

Non-projective sentences are a notorious prob-
lem in dependency parsing. Traditional algo-
rithms like those developed by Nivre (2003, 2004)
for transition-based parsing only allow the con-
struction of projective trees. These algorithms
make use of a stack, a buffer and a set of arcs,
and parsing consists of performing a sequence of
transitions on these structures. Traditional algo-
rithms have been extended in different ways to al-
low the construction of non-projective trees (Nivre
and Nilsson, 2005; Attardi, 2006; Nivre, 2007,
Gomez-Rodriguez and Nivre, 2010). One method
proposed by Nivre (2009) is based on the idea of
word reordering. This is achieved by adding a
transition that swaps two items in the data struc-
tures used, enabling the construction of arbitrary
non-projective trees while still only adding arcs
between adjacent words (after possible reorder-
ing). This technique was previously used in the
arc-standard transition system (Nivre, 2004). The
first contribution of this paper is to show that it
can also be combined with the arc-hybrid system

proposed by Kuhlmann et al. (2011).

Recent advances in dependency parsing have
demonstrated the benefit of using dynamic oracles
for training dependency parsers (Goldberg and
Nivre, 2013). Traditionally, parsers were trained
in a static way and were only exposed to config-
urations resulting from optimal transitions during
training. Dynamic oracles define optimal transi-
tion sequences for any configuration in which the
parser may be. The use of dynamic oracles en-
ables training with exploration of errors, which
mitigates the problem of error propagation at pre-
diction time.

In order to define a dynamic oracle, we need to
be able to compute the cost of any transition in
any configuration, where cost is usually defined as
minimum Hamming loss with respect to the best
tree reachable from that configuration. Goldberg
and Nivre (2013) showed that this computation
is straightforward for transition systems that sat-
isfy the property of arc-decomposability, mean-
ing that a tree is reachable from a configuration
if and only if every arc in the tree is reachable in
itself. Based on this result, they defined dynamic
oracles for the arc-eager (Nivre, 2003), arc-hybrid
(Kuhlmann et al., 2011) and easy-first (Goldberg
and Elhadad, 2010) systems.

Transition systems that allow non-projective
trees are in general not arc-decomposable and
therefore require different methods for con-
structing dynamic oracles (Gémez-Rodriguez and
Fernandez-Gonzalez, 2015). The online reorder-
ing system of Nivre (2009) is furthermore based
on the arc-standard system, which is not even
arc-decomposable in itself (Goldberg and Nivre,
2013). The second contribution of this paper is
to show that we can take advantage of the arc-
decomposability of the arc-hybrid transition sys-
tem and extend the existing dynamic oracle to deal
with the added swap transition. The resulting or-



acle is static with respect to the new transition
but remains dynamic for all other transitions. We
show experimentally that this static-dynamic ora-
cle gives a significant advantage over the alterna-
tive static oracle and results in competitive results
for non-projective parsing.

2 An Extended Transition System

The arc-hybrid system has configurations of the
form ¢ = (X, B, A), where

e 3 is a stack (represented as a list with the
head to the right),

e B is a buffer (represented as a list with the
head to the left),

e A is a set of dependency arcs (represented as
(h, d) pairs).!

Given a sentence W = wy, ..
initialized to:

Co = ([]7[1>"'7n7n+1]7{})

where n—+1 is a special root node, denoted r from
now on. Terminal configurations have the form:

c= (H? [T],A)

and the parse tree is given by the arc set A.
The original arc-hybrid system from Kuhlmann
et al. (2011) has three transitions:>

e LEFT[(c|so, b8, A)] =
(o, 0|8, AU{(b,50)})

e RIGHT[(cs1]s0, B, A)] =
(o]s1, B, AU{(s1,0)})

e SHIFT[(o, 0|3, A)] = (olb, B, A)

., Wy, the system is

There are preconditions such that SHIFT is legal
only if b # r, RIGHT only if |X| > 1 and LEFT
only if [X| > 0. In order to enforce that r has
exactly one dependent, as required by some de-
pendency grammar frameworks, we add a precon-
dition such that LEFT is legal only if [¥X| = 1 or
b#£r.

In the extended system, we add a SWAP tran-
sition to be able to construct non-projective trees
using online reordering:

"For simplicity, we focus on unlabeled dependency trees
in this paper. All results extend to the labeled case by adding
a label parameter to the LEFT and RIGHT transitions as usual.

Note that we use uppercase ¥ and B to refer to the entire

stack and buffer, respectively, while lowercase o and f refer
to relevant (possibly empty) sublists of 3 and B.

o SWAP[(0]s0, b3, A)] = (0, blso|B, A)

There is a precondition making SWAP legal only if
I¥| >0, |B| > 1and sp < b.?

The SWAP transition reorders nodes by moving
the item on top of the stack (s¢) to the second po-
sition in the buffer, thus inverting the order of sg
and b. The SHIFT and SWAP transitions together
implement a simple sorting algorithm, which al-
lows us to permute the order of nodes arbitrarily.
As shown by (Nivre, 2009), this implies that we
can construct any non-projective tree by reorder-
ing and adding arcs between adjacent nodes using
LEFT and RIGHT.

As already observed, the main advantage of the
arc-hybrid system over the arc-standard system is
that it is arc-decomposable, which allows us to
construct a simple and efficient dynamic oracle.
The arc-eager system (Nivre, 2003) is also arc-
decomposable but cannot be combined with SWAP
because items on the stack in that system do not
necessarily represent disjoint subtrees.

3 A Static-Dynamic Oracle

The dynamic oracle for arc-hybrid parsing defined
by Goldberg and Nivre (2013) computes the cost
of a transition by counting the number of gold arcs
that are made unreachable by applying that tran-
sition. This presupposes that the system is arc-
decomposable, a result that is proven in the same
paper. Our construction of an oracle for arc-hybrid
parsing with online ordering is based on the con-
jecture that we can retain arc-decomposition by
only making SWAP transitions that are necessary
to make non-projective arcs reachable and by en-
forcing all such transitions. Proving this conjec-
ture is, however, outside the scope of this paper.

3.1 Auxiliary Functions and Notation

We assume that gold trees are preprocessed at
training time to compute the following informa-
tion for each input node i:

e PROJ(i) = the position of node 7 in the pro-
jective order.*

e RDEPS(¢) = the set of reachable dependents
of ¢, initially all dependents of <.

3The last condition is needed to guarantee termination.

“The projective order is a canonical (re)ordering of the
words for which the tree is projective. It is obtained through
an inorder traversal of the tree that respects the local order of
a head and its dependents, as explained in Nivre (2009).



e LEFT:
C(LEFT) = |RDEPS(so)| + [h(so) # b and so € RDEPS(h(sp))]

Updates: Set RDEPS(sg) = [ ] and remove sq from RDEPS(h(sg)).

e RIGHT:
C(RIGHT) = |RDEPS(sp)| + [h(so) # s1 and sg € RDEPS(h(s))]

Updates: Set RDEPS(sg) = [ ] and remove sq from RDEPS(h(sg)).
e SHIFT:

1. If there exists a node ¢ € B_j, such that b < i and PROJ(b) > PROJ(7):

C(SHIFT) =0
2. Else:

C(SHIFT) = |{d € RDEPS(D) |d € £}| + [h(b) € £_;, and b € RDEPS(h(b))]

Updates: Remove b from RDEPS(h(b)) if h(b) € ¥_, and remove d € ¥ from RDEPS(b).

Figure 1: Transition costs and updates. Expressions of the form [®] evaluate to 1 if & is true, 0 otherwise.
We use sg and s; to refer to the top and second top item of the stack respectively and we use b to denote
the first item of the buffer. ¥ refers to the stack and X _;, to the stack excluding sg (if X is not empty).

B refers to the buffer and B_j to the buffer excluding b.

We use h(7) to denote the head of a node i in the
gold tree.

3.2 Static Oracle for SWAP

Our oracle is fully dynamic with respect to SHIFT,
LEFT and RIGHT but basically static with respect
to SWAP. This means that only optimal (zero cost)
SWAP transitions are allowed during training and
that we force the parser to apply the SWAP transi-
tion when needed.

Optimal: To prevent non-optimal SWAP transi-
tions, we add a precondition so that SWAP is legal
only if PROJ(sg) > PROJ(b).

Forced: To force necessary SWAP transitions, we
bypass the oracle whenever PROJ(sg) > PROJ (D).

3.3 Dynamic Oracle

Since we use a static oracle for SWAP transitions,
these will always have zero cost. The dynamic or-
acle thus only needs to define costs for the remain-
ing three transitions. To construct the oracle, we
start from the old dynamic oracle for the projective

5This is equivalent to an eager static oracle for SWAP in
the sense of Nivre et al. (2009).

system and extend it to account for the added flex-
ibility introduced by SWAP. Figure 1 defines the
transition costs as well as the necessary updates to
RDEPS after applying a transition.

e LEFT: Adding the arc (b, sp) and popping
so from the stack means that sy will not
be able to acquire a head different from b
nor any of its reachable dependents. In the
old projective case, the loss was limited to a
head in sp|3 and dependents in b|53, but be-
cause sg can potentially be swapped back to
the buffer, we instead define reachability ex-
plicitly through RDEPS(s) (for dependents)
and RDEPS(h(sp)) (for the head) and update
these accordingly after applying the transi-
tion.

e RIGHT: Adding the arc (s1,sp) and pop-
ping so from the stack means that sy will
not be able to acquire a head different from
s1 nor any of its reachable dependents. In
the old projective case, the loss was limited
to a head and dependents in b|/3, but be-
cause sg can potentially be swapped back to
the buffer, we again define reachability ex-
plicitly through RDEPS(sg) (for dependents)
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Figure 2: Top left: Configuration with all nodes in projective order and gold tree displayed above the
nodes. Top right: Gold arc lost (the red dotted arc) when applying a RIGHT transition from the top left
configuration. The arc added by the transition is in blue, it is not in the gold tree. Bottom left: Gold arcs
lost (the red dotted arcs) when applying a SHIFT transition from the top left configuration. Bottom right:
Configuration where b is higher in the projective order than a following node in the buffer.

and RDEPS(h(sg)) (for the head) and update
these accordingly after applying the transi-
tion.

e SHIFT: In the projective case, shifting b onto
the stack means that b will not be able to ac-
quire a head in X other than the top item sg
nor any dependents in X. With the SWAP
transition and a static oracle, we also have
to consider the case where b can later be
swapped back to the buffer, in which case
SHIFT has zero cost. We therefore have two
cases in Figure 1. In the first case, no updates
are needed. In the second case, the updates
are analogous to the old projective case.

To illustrate how the oracle works, let us look at
some hypothetical configurations. First, we can
have a situation as in the top left corner of Fig-
ure 2, where all nodes are in projective order given
the gold tree displayed above the nodes. For sim-
plicity, the nodes are named after their projective
order.

Applying a RIGHT transition in this configura-
tion makes it impossible for sg (2) to be attached
to its head (3) and therefore makes us lose the arc
3 — 2, as shown in the top right corner. If we
instead apply a SHIFT transition, we lose the arc
between b (3) and its head (1) as well as the arc 3
— 2, as shown in the bottom left corner. By con-
trast, a LEFT transition has zero cost, because no
arcs are lost so the best tree reachable in the orig-

inal configuration is still reachable after applying
the LEFT transition.

Consider now a configuration, like the one in
the bottom right corner of Figure 2, where the
nodes are not in projective order. Here we can shift
b (4) onto the stack without cost, because it will
later be swapped back to the buffer to restore the
projective order between 4 and 3. A RIGHT tran-
sition makes us lose the head and dependent of sg
(4 — 2 and 2 — 3). A LEFT transition makes us
lose the dependent of sy (2 — 3).

The combination of a dynamic oracle for LEFT,
RIGHT and SHIFT with a static oracle for SWAP al-
lows us to benefit from training with exploration in
most situations and at the same time capture non-
projective dependencies.

4 Experiments

We extend the parser we used in de Lhoneux et al.
(2017), a greedy transition-based parser that pre-
dicts the dependency tree given the raw words of a
sentence. That parser is itself an extension of the
parser developed by Kiperwasser and Goldberg
(2016). It relies on a BILSTM to learn informative
features of words in context and a feed-forward
network for predicting the next parsing transition.
It learns vector representations of the words as
well as characters. Contrary to parsing tradition,
it makes no use of part-of-speech tags.



We first compare our system, which uses our
static-dynamic oracle, with the same system using
a static oracle. This is to find out if we can benefit
from error exploration using our partially dynamic
oracle. We use the same set of hyperparameters as
in that paper in all our experiments.

We additionally compare our method to a
different approach to handling non-projectivity,
pseudo-projective parsing, as performed in
de Lhoneux et al. (2017). Pseudo-projective
parsing was developed by Nivre and Nilsson
(2005). In a pre-processing step, the training data
is projectivised: some nodes get reattached to
a close parent. Parsed data are then ‘deprojec-
tivised’ in a post-processing step. In order for
information about non-projectivity to be recover-
able after parsing, when projectivising, arcs are
renamed to encode information about the original
parent of dependents which get re-attached.
Note that hyperparameters were tweaked for the
pseudo-projective system, possibly giving an
unfair advantage.

Lastly, we compare to a projective baseline,
using a dynamic oracle but no SWAP transition.’
This is to find out the extent to which dealing with
non-projectivity is important.

We selected a sample of 5 treebanks from the
Universal Dependencies CoNLL 2017 shared task
data (Nivre et al., 2017). We selected languages
to have different frequencies of non-projectivity,
both at the sentence level and at the level of indi-
vidual arcs, ranging from a very high frequency
(Ancient-Greek) to a low frequency (English), as
well as some typological variety. Non-projective
frequencies were taken from Straka et al. (2015)
and are included in Table 1, which report our
results on the development sets (best out of 20
epochs).

Comparing to the static baseline, we can verify
that our static-dynamic oracle really preserves the
benefits of training with error exploration, with
improvements ranging from 0.5 to 3.5 points.
(All differences here are statistically significant
with p<0.01, except for Portuguese, where the
difference is statistically significant with p<0.05
according to the McNemar test).

The new system achieves results largely on par

SWe released our system as UUparser 2.0, available at
https://github.com/UppsalaNLP/uuparser.

"When training the projective baseline, we removed non-
projective sentences from the training data.

Language | %NP | S-Dy Static|PProj Proj
A.Greek (9.8 /632|59.53 56.04| 59.22 46.98
Arabic 03/82 |77.08 76.61| 76.96 76.55
Basque 5.0/33.7/72.27 70.98| 74.16 68.85
English  [0.5/5.0 |81.97 81.00| 82.21 82.37
Portuguese (1.3 / 18.4|87.34 86.60| 87.20 85.39

Table 1: LAS on dev sets with gold tokeniza-
tion for our static-dynamic system (S-Dy), the
static and projective baselines (Static, Proj) and
the pseudo-projective system of de Lhoneux et al.
(2017) (PProj). %NP = percentage of non-
projective arcs/sentences.

with the pseudo-projective parser. Our method is
better by a small margin for 3 out of 5 languages
and worse by a large margin for 1. Overall, these
results are encouraging given that our method is
simpler and more efficient to train, with no need
for pre- or post-processing and no extension of
the dependency label set.®

Comparing to the projective baseline, we see
that strictly projective parsing can be slightly
better than both online reordering and pseudo-
projective parsing for a language with few
non-projective arcs/sentences like English. For
all other languages, we see small (Arabic) to big
(Ancient Greek) improvements from dealing with
non-projectivity in some way.

5 Conclusion

We have shown how the SWAP transition for on-
line reordering can be integrated into the arc-
hybrid transition system for dependency parsing
in such a way that we still benefit from training
with exploration using a static-dynamic oracle. In
the future, we intend to test this further by eval-
uating our model on more languages with proper
tuning of hyperparameters. We are also interested
in the question of whether it is possible to define
a fully dynamic oracle for our system and allow
exploration for the SWAP transition too.
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