Traduire des corpus pour construire des modèles de traduction neuronaux : une solution pour toutes les langues peu dotées ? (Corpus Translation to Build Translation Models : a Solution for all Low-Resource Languages ?)

Raoul Blin


Abstract
Nous comparons deux usages des langues pivots en traduction automatique neuronale pour des langues peu dotées. Nous nous intéressons au cas où il existe une langue pivot telle que les paires source-pivot et pivot-cible sont bien ou très bien dotées. Nous comparons la traduction séquentielle traditionnelle (source→pivot→cible) et la traduction à l’aide d’un modèle entraîné sur des corpus traduits à l’aide des langues pivot et cible. Les expériences sont menées sur trois langues sources (espagnol, allemand et japonais), une langue pivot (anglais) et une langue cible (français). Nous constatons que quelle que soit la proximité linguistique entre les langues source et pivot, le modèle entraîné sur corpus traduit a de meilleurs résultats que la traduction séquentielle, et bien sûr que la traduction directe.
Anthology ID:
2020.jeptalnrecital-taln.15
Volume:
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles
Month:
6
Year:
2020
Address:
Nancy, France
Editors:
Christophe Benzitoun, Chloé Braud, Laurine Huber, David Langlois, Slim Ouni, Sylvain Pogodalla, Stéphane Schneider
Venue:
JEP/TALN/RECITAL
SIG:
Publisher:
ATALA et AFCP
Note:
Pages:
172–180
Language:
French
URL:
https://aclanthology.org/2020.jeptalnrecital-taln.15
DOI:
Bibkey:
Cite (ACL):
Raoul Blin. 2020. Traduire des corpus pour construire des modèles de traduction neuronaux : une solution pour toutes les langues peu dotées ? (Corpus Translation to Build Translation Models : a Solution for all Low-Resource Languages ?). In Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles, pages 172–180, Nancy, France. ATALA et AFCP.
Cite (Informal):
Traduire des corpus pour construire des modèles de traduction neuronaux : une solution pour toutes les langues peu dotées ? (Corpus Translation to Build Translation Models : a Solution for all Low-Resource Languages ?) (Blin, JEP/TALN/RECITAL 2020)
Copy Citation:
PDF:
https://preview.aclanthology.org/improve-issue-templates/2020.jeptalnrecital-taln.15.pdf