Exploiting structural meeting-specific features for topic segmentation

Maria Georgescul, Alexander Clarck, Susan Armstrong


Abstract
In this article we address the task of automatic text structuring into linear and non-overlapping thematic episodes. Our investigation reports on the use of various lexical, acoustic and syntactic features, and makes a comparison of how these features influence performance of automatic topic segmentation. Using datasets containing multi-party meeting transcriptions, we base our experiments on a proven state-of-the-art approach using support vector classification.
Anthology ID:
2007.jeptalnrecital-long.1
Volume:
Actes de la 14ème conférence sur le Traitement Automatique des Langues Naturelles. Articles longs
Month:
June
Year:
2007
Address:
Toulouse, France
Editors:
Nabil Hathout, Philippe Muller
Venue:
JEP/TALN/RECITAL
SIG:
Publisher:
ATALA
Note:
Pages:
15–24
Language:
URL:
https://aclanthology.org/2007.jeptalnrecital-long.1
DOI:
Bibkey:
Cite (ACL):
Maria Georgescul, Alexander Clarck, and Susan Armstrong. 2007. Exploiting structural meeting-specific features for topic segmentation. In Actes de la 14ème conférence sur le Traitement Automatique des Langues Naturelles. Articles longs, pages 15–24, Toulouse, France. ATALA.
Cite (Informal):
Exploiting structural meeting-specific features for topic segmentation (Georgescul et al., JEP/TALN/RECITAL 2007)
Copy Citation:
PDF:
https://preview.aclanthology.org/improve-issue-templates/2007.jeptalnrecital-long.1.pdf