This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The dynamic nature of real-world information necessitates knowledge editing (KE) in large language models (LLMs). The edited knowledge should propagate and facilitate the deduction of new information based on existing model knowledge. We term the existing related knowledge in LLM serving as the origination of knowledge propagation as ”deduction anchors”. However, current KE approaches, which only operate on (subject, relation, object) triple. We both theoretically and empirically observe that this simplified setting often leads to uncertainty when determining the deduction anchors, causing low confidence in their answers. To mitigate this issue, we propose a novel task of event-based knowledge editing that pairs facts with event descriptions. This task manifests not only a closer simulation of real-world editing scenarios but also a more logically sound setting, implicitly defining the deduction anchor and enabling LLMs to propagate knowledge confidently. We curate a new benchmark dataset Evedit derived from the CounterFact dataset and validate its superiority in improving model confidence. Moreover, while we observe that the event-based setting is significantly challenging for existing approaches, we propose a novel approach Self-Edit that showcases stronger performance, achieving 55.6% consistency improvement while maintaining the naturalness of generation.
Extensive previous research has focused on post-training knowledge editing (KE) for language models (LMs) to ensure that knowledge remains accurate and up-to-date. One desired property and open question in KE is to let edited LMs correctly handle ripple effects, where LM is expected to answer its logically related knowledge accurately. In this paper, we answer the question of why most KE methods still create messy ripple effects. We conduct extensive analysis and identify a salient indicator, GradSim, that effectively reveals when and why updated knowledge ripples in LMs. GradSim is computed by the cosine similarity between gradients of the original fact and its related knowledge. We observe a strong positive correlation between ripple effect performance and GradSim across different LMs, KE methods, and evaluation metrics. Further investigations into three counter-intuitive failure cases (Negation, Over-Ripple, Multi-Lingual) of ripple effects demonstrate that these failures are often associated with very low GradSim. This finding validates that GradSim is an effective indicator of when knowledge ripples in LMs.
Fine-grained few-shot entity extraction in the chemical domain faces two unique challenges. First, compared with entity extraction tasks in the general domain, sentences from chemical papers usually contain more entities. Moreover, entity extraction models usually have difficulty extracting entities of long-tailed types. In this paper, we propose Chem-FINESE, a novel sequence-to-sequence (seq2seq) based few-shot entity extraction approach, to address these two challenges. Our Chem-FINESE has two components: a seq2seq entity extractor to extract named entities from the input sentence and a seq2seq self-validation module to reconstruct the original input sentence from extracted entities. Inspired by the fact that a good entity extraction system needs to extract entities faithfully, our new self-validation module leverages entity extraction results to reconstruct the original input sentence. Besides, we design a new contrastive loss to reduce excessive copying during the extraction process. Finally, we release ChemNER+, a new fine-grained chemical entity extraction dataset that is annotated by domain experts with the ChemNER schema. Experiments in few-shot settings with both ChemNER+ and CHEMET datasets show that our newly proposed framework has contributed up to 8.26% and 6.84% absolute F1-score gains respectively.
Open-domain Question Answering (OpenQA) aims at answering factual questions with an external large-scale knowledge corpus. However, real-world knowledge is not static; it updates and evolves continually. Such a dynamic characteristic of knowledge poses a vital challenge for these models, as the trained models need to constantly adapt to the latest information to make sure that the answers remain accurate. In addition, it is still unclear how well an OpenQA model can transfer to completely new knowledge domains. In this paper, we investigate the generalization performance of a retrieval-augmented QA model in two specific scenarios: 1) adapting to updated versions of the same knowledge corpus; 2) switching to completely different knowledge domains. We observe that the generalization challenges of OpenQA models stem from the reader’s over-reliance on memorizing the knowledge from the external corpus, which hinders the model from generalizing to a new knowledge corpus. We introduce Corpus-Invariant Tuning (CIT), a simple but effective training strategy, to mitigate the knowledge over-memorization by controlling the likelihood of retrieved contexts during training. Extensive experimental results on multiple OpenQA benchmarks show that CIT achieves significantly better generalizability without compromising the model’s performance in its original corpus and domain.
Event extraction has gained considerable interest due to its wide-ranging applications. However, recent studies draw attention to evaluation issues, suggesting that reported scores may not accurately reflect the true performance. In this work, we identify and address evaluation challenges, including inconsistency due to varying data assumptions or preprocessing steps, the insufficiency of current evaluation frameworks that may introduce dataset or data split bias, and the low reproducibility of some previous approaches. To address these challenges, we present TextEE, a standardized, fair, and reproducible benchmark for event extraction. TextEE comprises standardized data preprocessing scripts and splits for 16 datasets spanning eight diverse domains and includes 14 recent methodologies, conducting a comprehensive benchmark reevaluation. We also evaluate five varied large language models on our TextEE benchmark and demonstrate how they struggle to achieve satisfactory performance. Inspired by our reevaluation results and findings, we discuss the role of event extraction in the current NLP era, as well as future challenges and insights derived from TextEE. We believe TextEE, the first standardized comprehensive benchmarking tool, will significantly facilitate future event extraction research.
Information extraction (IE) and summarization are closely related, both tasked with presenting a subset of the information contained in a natural language text. However, while IE extracts structural representations, summarization aims to abstract the most salient information into a generated text summary – thus potentially encountering the technical limitations of current text generation methods (e.g., hallucination). To mitigate this risk, this work uses structured IE graphs to enhance the abstractive summarization task. Specifically, we focus on improving Multi-Document Summarization (MDS) performance by using cross-document IE output, incorporating two novel components: (1) the use of auxiliary entity and event recognition systems to focus the summary generation model; (2) incorporating an alignment loss between IE nodes and their text spans to reduce inconsistencies between the IE graphs and text representations. Operationally, both the IE nodes and corresponding text spans are projected into the same embedding space and pairwise distance is minimized. Experimental results on multiple MDS benchmarks show that summaries generated by our model are more factually consistent with the source documents than baseline models while maintaining the same level of abstractiveness.
In this paper, we present RESIN-EDITOR, an interactive event graph visualizer and editor designed for analyzing complex events. Our RESIN-EDITOR system allows users to render and freely edit hierarchical event graphs extracted from multimedia and multi-document news clusters with guidance from human-curated event schemas. RESIN-EDITOR’s unique features include hierarchical graph visualization, comprehensive source tracing, and interactive user editing, which significantly outperforms existing Information Extraction (IE) visualization tools in both IE result analysis and general model improvements. In our evaluation of RESIN-EDITOR, we demonstrate ways in which our tool is effective in understanding complex events and enhancing system performances. The source code, a video demonstration, and a live website for RESIN-EDITOR have been made publicly available.
To tackle the challenge of accurate and timely communication regarding the COVID-19 pandemic, we present a COVID-19 Claim Radar to automatically extract supporting and refuting claims on a daily basis. We provide a comprehensive structured view of claims, including rich claim attributes (such as claimers and claimer affiliations) and associated knowledge elements as claim semantics (such as events, relations and entities), enabling users to explore equivalent, refuting, or supporting claims with structural evidence, such as shared claimers, similar centroid events and arguments. In order to consolidate claim structures at the corpus-level, we leverage Wikidata as the hub to merge coreferential knowledge elements. The system automatically provides users a comprehensive exposure to COVID-19 related claims, their importance, and their interconnections. The system is publicly available at GitHub and DockerHub, with complete documentation.
Supervised event extraction models require a substantial amount of training data to perform well. However, event annotation requires a lot of human effort and costs much time, which limits the application of existing supervised approaches to new event types. In order to reduce manual labor and shorten the time to build an event extraction system for an arbitrary event ontology, we present a new framework to train such systems much more efficiently without large annotations. Our event trigger labeling model uses a weak supervision approach, which only requires a set of keywords, a small number of examples and an unlabeled corpus, on which our approach automatically collects weakly supervised annotations. Our argument role labeling component performs zero-shot learning, which only requires the names of the argument roles of new event types. The source codes of our event trigger detection1 and event argument extraction2 models are publicly available for research purposes. We also release a dockerized system connecting the two models into an unified event extraction pipeline.
Modern large-scale Pre-trained Language Models (PLMs) have achieved tremendous success on a wide range of downstream tasks. However, most of the LM pre-training objectives only focus on text reconstruction, but have not sought to learn latent-level interpretable representations of sentences. In this paper, we manage to push the language models to obtain a deeper understanding of sentences by proposing a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types. Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge. Besides, the language model pre-trained with such an objective also significantly improves Information Extraction related downstream tasks in both supervised and few-shot settings. Our code is publicly available at https://github.com/renll/SparseLT.
We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.
Biomedical Information Extraction from scientific literature presents two unique and non-trivial challenges. First, compared with general natural language texts, sentences from scientific papers usually possess wider contexts between knowledge elements. Moreover, comprehending the fine-grained scientific entities and events urgently requires domain-specific background knowledge. In this paper, we propose a novel biomedical Information Extraction (IE) model to tackle these two challenges and extract scientific entities and events from English research papers. We perform Abstract Meaning Representation (AMR) to compress the wide context to uncover a clear semantic structure for each complex sentence. Besides, we construct the sentence-level knowledge graph from an external knowledge base and use it to enrich the AMR graph to improve the model’s understanding of complex scientific concepts. We use an edge-conditioned graph attention network to encode the knowledge-enriched AMR graph for biomedical IE tasks. Experiments on the GENIA 2011 dataset show that the AMR and external knowledge have contributed 1.8% and 3.0% absolute F-score gains respectively. In order to evaluate the impact of our approach on real-world problems that involve topic-specific fine-grained knowledge elements, we have also created a new ontology and annotated corpus for entity and event extraction for the COVID-19 scientific literature, which can serve as a new benchmark for the biomedical IE community.
Relations in most of the traditional knowledge graphs (KGs) only reflect static and factual connections, but fail to represent the dynamic activities and state changes about entities. In this paper, we emphasize the importance of incorporating events in KG representation learning, and propose an event-enhanced KG embedding model EventKE. Specifically, given the original KG, we first incorporate event nodes by building a heterogeneous network, where entity nodes and event nodes are distributed on the two sides of the network inter-connected by event argument links. We then use entity-entity relations from the original KG and event-event temporal links to inner-connect entity and event nodes respectively. We design a novel and effective attention-based message passing method, which is conducted on entity-entity, event-entity, and event-event relations to fuse the event information into KG embeddings. Experimental results on real-world datasets demonstrate that events can greatly improve the quality of the KG embeddings on multiple downstream tasks.
The tasks of Rich Semantic Parsing, such as Abstract Meaning Representation (AMR), share similar goals with Information Extraction (IE) to convert natural language texts into structured semantic representations. To take advantage of such similarity, we propose a novel AMR-guided framework for joint information extraction to discover entities, relations, and events with the help of a pre-trained AMR parser. Our framework consists of two novel components: 1) an AMR based semantic graph aggregator to let the candidate entity and event trigger nodes collect neighborhood information from AMR graph for passing message among related knowledge elements; 2) an AMR guided graph decoder to extract knowledge elements based on the order decided by the hierarchical structures in AMR. Experiments on multiple datasets have shown that the AMR graph encoder and decoder have provided significant gains and our approach has achieved new state-of-the-art performance on all IE subtasks.