Zhengxuan Wu


2024

pdf
RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations
Jing Huang | Zhengxuan Wu | Christopher Potts | Mor Geva | Atticus Geiger
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Individual neurons participate in the representation of multiple high-level concepts. To what extent can different interpretability methods successfully disentangle these roles? To help address this question, we introduce RAVEL (Resolving Attribute-Value Entanglements in Language Models), a dataset that enables tightly controlled, quantitative comparisons between a variety of existing interpretability methods. We use the resulting conceptual framework to define the new method of Multi-task Distributed Alignment Search (MDAS), which allows us to find distributed representations satisfying multiple causal criteria. With Llama2-7B as the target language model, MDAS achieves state-of-the-art results on RAVEL, demonstrating the importance of going beyond neuron-level analyses to identify features distributed across activations. We release our benchmark at https://github.com/explanare/ravel.

pdf
Dancing in Chains: Reconciling Instruction Following and Faithfulness in Language Models
Zhengxuan Wu | Yuhao Zhang | Peng Qi | Yumo Xu | Rujun Han | Yian Zhang | Jifan Chen | Bonan Min | Zhiheng Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Modern language models (LMs) need to follow human instructions while being faithful; yet, they often fail to achieve both. Here, we provide concrete evidence of a trade-off between instruction following (i.e., follow open-ended instructions) and faithfulness (i.e., ground responses in given context) when training LMs with these objectives. For instance, fine-tuning LLaMA-7B on instruction following datasets renders it less faithful. Conversely, instruction-tuned Vicuna-7B shows degraded performance at following instructions when further optimized on tasks that require contextual grounding. One common remedy is multi-task learning (MTL) with data mixing, yet it remains far from achieving a synergic outcome. We propose a simple yet effective method that relies on Reject-sampling by Self-instruct with Continued Fine-tuning (ReSet), which significantly outperforms vanilla MTL. Surprisingly, we find that less is more, as training ReSet with high-quality, yet substantially smaller data (three-fold less) yields superior results. Our findings offer a better understanding of objective discrepancies in alignment training of LMs.

pdf
pyvene: A Library for Understanding and Improving PyTorch Models via Interventions
Zhengxuan Wu | Atticus Geiger | Aryaman Arora | Jing Huang | Zheng Wang | Noah Goodman | Christopher Manning | Christopher Potts
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)

Interventions on model-internal states are fundamental operations in many areas of AI, including model editing, steering, robustness, and interpretability. To facilitate such research, we introduce pyvene, an open-source Python library that supports customizable interventions on a range of different PyTorch modules. pyvene supports complex intervention schemes with an intuitive configuration format, and its interventions can be static or include trainable parameters. We show how pyvene provides a unified and extensible framework for performing interventions on neural models and sharing the intervened upon models with others. We illustrate the power of the library via interpretability analyses using causal abstraction and knowledge localization. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at ‘https://github.com/stanfordnlp/pyvene‘.

2023

pdf
Rigorously Assessing Natural Language Explanations of Neurons
Jing Huang | Atticus Geiger | Karel D’Oosterlinck | Zhengxuan Wu | Christopher Potts
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Natural language is an appealing medium for explaining how large language models process and store information, but evaluating the faithfulness of such explanations is challenging. To help address this, we develop two modes of evaluation for natural language explanations that claim individual neurons represent a concept in a text input. In the *observational mode*, we evaluate claims that a neuron a activates on all and only input strings that refer to a concept picked out by the proposed explanation E. In the *intervention mode*, we construe E as a claim that neuron a is a causal mediator of the concept denoted by E. We apply our framework to the GPT-4-generated explanations of GPT-2 XL neurons of Bills et al. (2023) and show that even the most confident explanations have high error rates and little to no causal efficacy. We close the paper by critically assessing whether natural language is a good choice for explanations and whether neurons are the best level of analysis.

pdf
Oolong: Investigating What Makes Transfer Learning Hard with Controlled Studies
Zhengxuan Wu | Alex Tamkin | Isabel Papadimitriou
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

When we transfer a pretrained language model to a new language, there are many axes of variation that change at once. To disentangle the impact of different factors like syntactic similarity and vocabulary similarity, we propose a set of controlled transfer studies: we systematically transform the language of the GLUE benchmark, altering one axis of crosslingual variation at a time, and then measure the resulting drops in a pretrained model’s downstream performance. We find that models can largely recover from syntactic-style shifts, but cannot recover from vocabulary misalignment and embedding matrix re-initialization, even with continued pretraining on 15 million tokens. Moreover, good-quality tokenizers in the transfer language do not make vocabulary alignment easier. Our experiments provide insights into the factors of cross-lingual transfer that researchers should most focus on when designing language transfer scenarios.

pdf
MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions
Zexuan Zhong | Zhengxuan Wu | Christopher Manning | Christopher Potts | Danqi Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The information stored in large language models (LLMs) falls out of date quickly, and retraining from scratch is often not an option. This has recently given rise to a range of techniques for injecting new facts through updating model weights. Current evaluation paradigms are extremely limited, mainly validating the recall of edited facts, but changing one fact should cause rippling changes to the model’s related beliefs. If we edit the UK Prime Minister to now be Rishi Sunak, then we should get a different answer to Who is married to the British Prime Minister? In this work, we present a benchmark MQuAKE (Multi-hop Question Answering for Knowledge Editing) comprising multi-hop questions that assess whether edited models correctly answer questions where the answer should change as an entailed consequence of edited facts. While we find that current knowledge-editing approaches can recall edited facts accurately, they fail catastrophically on the constructed multi-hop questions. We thus propose a simple memory-based approach, MeLLo, which stores all edited facts externally while prompting the language model iteratively to generate answers that are consistent with the edited facts. While MQuAKE remains challenging, we show that MeLLo scales well with LLMs (up to 175B) and outperforms previous model editors by a large margin.

pdf
Inducing Character-level Structure in Subword-based Language Models with Type-level Interchange Intervention Training
Jing Huang | Zhengxuan Wu | Kyle Mahowald | Christopher Potts
Findings of the Association for Computational Linguistics: ACL 2023

Language tasks involving character-level manipulations (e.g., spelling corrections, arithmetic operations, word games) are challenging for models operating on subword units. To address this, we develop a causal intervention framework to learn robust and interpretable character representations inside subword-based language models. Our method treats each character as a typed variable in a causal model and learns such causal structures by adapting the interchange intervention training method of Geiger et al. (2021). We additionally introduce a suite of character-level tasks that systematically vary in their dependence on meaning and sequence-level context. While character-level models still perform best on purely form-based tasks like string reversal, our method outperforms character-level models on more complex tasks that blend form, meaning, and context, such as spelling correction in context and word search games. Compared with standard subword-based models, our approach also significantly improves robustness on unseen token sequences and leads to human-interpretable internal representations of characters.

pdf
ReCOGS: How Incidental Details of a Logical Form Overshadow an Evaluation of Semantic Interpretation
Zhengxuan Wu | Christopher D. Manning | Christopher Potts
Transactions of the Association for Computational Linguistics, Volume 11

Compositional generalization benchmarks for semantic parsing seek to assess whether models can accurately compute meanings for novel sentences, but operationalize this in terms of logical form (LF) prediction. This raises the concern that semantically irrelevant details of the chosen LFs could shape model performance. We argue that this concern is realized for the COGS benchmark (Kim and Linzen, 2020). COGS poses generalization splits that appear impossible for present-day models, which could be taken as an indictment of those models. However, we show that the negative results trace to incidental features of COGS LFs. Converting these LFs to semantically equivalent ones and factoring out capabilities unrelated to semantic interpretation, we find that even baseline models get traction. A recent variable-free translation of COGS LFs suggests similar conclusions, but we observe this format is not semantically equivalent; it is incapable of accurately representing some COGS meanings. These findings inform our proposal for ReCOGS, a modified version of COGS that comes closer to assessing the target semantic capabilities while remaining very challenging. Overall, our results reaffirm the importance of compositional generalization and careful benchmark task design.

2022

pdf
Causal Distillation for Language Models
Zhengxuan Wu | Atticus Geiger | Joshua Rozner | Elisa Kreiss | Hanson Lu | Thomas Icard | Christopher Potts | Noah Goodman
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Distillation efforts have led to language models that are more compact and efficient without serious drops in performance. The standard approach to distillation trains a student model against two objectives: a task-specific objective (e.g., language modeling) and an imitation objective that encourages the hidden states of the student model to be similar to those of the larger teacher model. In this paper, we show that it is beneficial to augment distillation with a third objective that encourages the student to imitate the causal dynamics of the teacher through a distillation interchange intervention training objective (DIITO). DIITO pushes the student model to become a causal abstraction of the teacher model – a faithful model with simpler causal structure. DIITO is fully differentiable, easily implemented, and combines flexibly with other objectives. Compared against standard distillation with the same setting, DIITO results in lower perplexity on the WikiText-103M corpus (masked language modeling) and marked improvements on the GLUE benchmark (natural language understanding), SQuAD (question answering), and CoNLL-2003 (named entity recognition).

pdf
Identifying the Limits of Cross-Domain Knowledge Transfer for Pretrained Models
Zhengxuan Wu | Nelson F. Liu | Christopher Potts
Proceedings of the 7th Workshop on Representation Learning for NLP

There is growing evidence that pretrained language models improve task-specific fine-tuning even where the task examples are radically different from those seen in training. We study an extreme case of transfer learning by providing a systematic exploration of how much transfer occurs when models are denied any information about word identity via random scrambling. In four classification tasks and two sequence labeling tasks, we evaluate LSTMs using GloVe embeddings, BERT, and baseline models. Among these models, we find that only BERT shows high rates of transfer into our scrambled domains, and for classification but not sequence labeling tasks. Our analyses seek to explain why transfer succeeds for some tasks but not others, to isolate the separate contributions of pretraining versus fine-tuning, to show that the fine-tuning process is not merely learning to unscramble the scrambled inputs, and to quantify the role of word frequency. Furthermore, our results suggest that current benchmarks may overestimate the degree to which current models actually understand language.

2021

pdf
DynaSent: A Dynamic Benchmark for Sentiment Analysis
Christopher Potts | Zhengxuan Wu | Atticus Geiger | Douwe Kiela
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We introduce DynaSent (‘Dynamic Sentiment’), a new English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis. DynaSent combines naturally occurring sentences with sentences created using the open-source Dynabench Platform, which facilities human-and-model-in-the-loop dataset creation. DynaSent has a total of 121,634 sentences, each validated by five crowdworkers, and its development and test splits are designed to produce chance performance for even the best models we have been able to develop; when future models solve this task, we will use them to create DynaSent version 2, continuing the dynamic evolution of this benchmark. Here, we report on the dataset creation effort, focusing on the steps we took to increase quality and reduce artifacts. We also present evidence that DynaSent’s Neutral category is more coherent than the comparable category in other benchmarks, and we motivate training models from scratch for each round over successive fine-tuning.

pdf
Dynabench: Rethinking Benchmarking in NLP
Douwe Kiela | Max Bartolo | Yixin Nie | Divyansh Kaushik | Atticus Geiger | Zhengxuan Wu | Bertie Vidgen | Grusha Prasad | Amanpreet Singh | Pratik Ringshia | Zhiyi Ma | Tristan Thrush | Sebastian Riedel | Zeerak Waseem | Pontus Stenetorp | Robin Jia | Mohit Bansal | Christopher Potts | Adina Williams
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model will misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field.

pdf
Pragmatically Informative Color Generation by Grounding Contextual Modifiers
Zhengxuan Wu | Desmond C. Ong
Proceedings of the Society for Computation in Linguistics 2021

2020

pdf
Structured Self-AttentionWeights Encode Semantics in Sentiment Analysis
Zhengxuan Wu | Thanh-Son Nguyen | Desmond Ong
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Neural attention, especially the self-attention made popular by the Transformer, has become the workhorse of state-of-the-art natural language processing (NLP) models. Very recent work suggests that the self-attention in the Transformer encodes syntactic information; Here, we show that self-attention scores encode semantics by considering sentiment analysis tasks. In contrast to gradient-based feature attribution methods, we propose a simple and effective Layer-wise Attention Tracing (LAT) method to analyze structured attention weights. We apply our method to Transformer models trained on two tasks that have surface dissimilarities, but share common semantics—sentiment analysis of movie reviews and time-series valence prediction in life story narratives. Across both tasks, words with high aggregated attention weights were rich in emotional semantics, as quantitatively validated by an emotion lexicon labeled by human annotators. Our results show that structured attention weights encode rich semantics in sentiment analysis, and match human interpretations of semantics.