Yuxiang Nie


2024

pdf
SciMRC: Multi-perspective Scientific Machine Reading Comprehension
Xiao Zhang | Heqi Zheng | Yuxiang Nie | Heyan Huang | Xian-Ling Mao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Scientific Machine Reading Comprehension (SMRC) aims to facilitate the understanding of scientific texts through human-machine interactions. While existing dataset has significantly contributed to this field, it predominantly focus on single-perspective question-answer pairs, thereby overlooking the inherent variation in comprehension levels among different readers. To address this limitation, we introduce a novel multi-perspective scientific machine reading comprehension dataset, SciMRC, which incorporates perspectives from beginners, students, and experts. Our dataset comprises 741 scientific papers and 6,057 question-answer pairs, with 3,306, 1,800, and 951 pairs corresponding to beginners, students, and experts respectively. Extensive experiments conducted on SciMRC using pre-trained models underscore the importance of considering diverse perspectives in SMRC and highlight the challenging nature of our scientific machine comprehension tasks.

pdf
Mix-Initiative Response Generation with Dynamic Prefix Tuning
Yuxiang Nie | Heyan Huang | Xian-Ling Mao | Lizi Liao
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Mixed initiative serves as one of the key factors in controlling conversation directions. For a speaker, responding passively or leading proactively would result in rather different responses. However, most dialogue systems focus on training a holistic response generation model without any distinction among different initiatives. It leads to the cross-contamination problem, where the model confuses different initiatives and generates inappropriate responses. Moreover, obtaining plenty of human annotations for initiative labels can be expensive. To address this issue, we propose a general mix-Initiative Dynamic Prefix Tuning framework (IDPT) to decouple different initiatives from the generation model, which learns initiative-aware prefixes in both supervised and unsupervised settings. Specifically, IDPT decouples initiative factors into different prefix parameters and uses the attention mechanism to adjust the selection of initiatives in guiding generation dynamically. The prefix parameters can be tuned towards accurate initiative prediction as well as mix-initiative response generation. Extensive experiments on two public dialogue datasets show that the proposed IDPT outperforms previous baselines on both automatic metrics and human evaluations. It also manages to generate appropriate responses with manipulated initiatives.

2023

pdf
Reinforced Target-driven Conversational Promotion
Huy Dao | Lizi Liao | Dung Le | Yuxiang Nie
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The ability to proactively engage with users towards pitching products is highly desired for conversational assistants. However, existing conversational recommendation methods overemphasize on acquiring user preferences while ignore the strategic planning for nudging users towards accepting a designated item. Hence, these methods fail to promote specified items with engaging responses. In this work, we propose a Reinforced Target-driven Conversational Promotion (RTCP) framework for conversational promotion. RTCP integrates short-term and long-term planning via a balanced gating mechanism. Inside which, the dialogue actions are predicted via a knowledge-integrated multi-head attention and guided via reinforcement learning rewards. RTCP then employs action-guided prefix tuning to generate relevant responses. Experimental results demonstrate that our model outperforms state-of-the-art models on both automatic metrics and human evaluation. Moreover, RTCP has a strong capability in quickly adapting to unseen scenarios just by updating prefix parameters without re-training the whole model.

pdf
AttenWalker: Unsupervised Long-Document Question Answering via Attention-based Graph Walking
Yuxiang Nie | Heyan Huang | Wei Wei | Xian-Ling Mao
Findings of the Association for Computational Linguistics: ACL 2023

Annotating long-document question answering (long-document QA) pairs is time-consuming and expensive. To alleviate the problem, it might be possible to generate long-document QA pairs via unsupervised question answering (UQA) methods. However, existing UQA tasks are based on short documents, and can hardly incorporate long-range information. To tackle the problem, we propose a new task, named unsupervised long-document question answering (ULQA), aiming to generate high-quality long-document QA instances in an unsupervised manner. Besides, we propose AttenWalker, a novel unsupervised method to aggregate and generate answers with long-range dependency so as to construct long-document QA pairs. Specifically, AttenWalker is composed of three modules, i.e. span collector, span linker and answer aggregator. Firstly, the span collector takes advantage of constituent parsing and reconstruction loss to select informative candidate spans for constructing answers. Secondly, with the help of the attention graph of a pre-trained long-document model, potentially interrelated text spans (that might be far apart) could be linked together via an attention-walking algorithm. Thirdly, in the answer aggregator, linked spans are aggregated into the final answer via the mask-filling ability of a pre-trained model. Extensive experiments show that AttenWalker outperforms previous methods on NarrativeQA and Qasper. In addition, AttenWalker also shows strong performance in the few-shot learning setting.

2022

pdf
Unsupervised Question Answering via Answer Diversifying
Yuxiang Nie | Heyan Huang | Zewen Chi | Xian-Ling Mao
Proceedings of the 29th International Conference on Computational Linguistics

Unsupervised question answering is an attractive task due to its independence on labeled data. Previous works usually make use of heuristic rules as well as pre-trained models to construct data and train QA models. However, most of these works regard named entity (NE) as the only answer type, which ignores the high diversity of answers in the real world. To tackle this problem, we propose a novel unsupervised method by diversifying answers, named DiverseQA. Specifically, the proposed method is composed of three modules: data construction, data augmentation and denoising filter. Firstly, the data construction module extends the extracted named entity into a longer sentence constituent as the new answer span to construct a QA dataset with diverse answers. Secondly, the data augmentation module adopts an answer-type dependent data augmentation process via adversarial training in the embedding level. Thirdly, the denoising filter module is designed to alleviate the noise in the constructed data. Extensive experiments show that the proposed method outperforms previous unsupervised models on five benchmark datasets, including SQuADv1.1, NewsQA, TriviaQA, BioASQ, and DuoRC. Besides, the proposed method shows strong performance in the few-shot learning setting.

pdf
Capturing Global Structural Information in Long Document Question Answering with Compressive Graph Selector Network
Yuxiang Nie | Heyan Huang | Wei Wei | Xian-Ling Mao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Long document question answering is a challenging task due to its demands for complex reasoning over long text. Previous works usually take long documents as non-structured flat texts or only consider the local structure in long documents. However, these methods usually ignore the global structure of the long document, which is essential for long-range understanding. To tackle this problem, we propose Compressive Graph Selector Network (CGSN) to capture the global structure in a compressive and iterative manner. The proposed model mainly focuses on the evidence selection phase of long document question answering. Specifically, it consists of three modules: local graph network, global graph network and evidence memory network. Firstly, the local graph network builds the graph structure of the chunked segment in token, sentence, paragraph and segment levels to capture the short-term dependency of the text. Secondly, the global graph network selectively receives the information of each level from the local graph, compresses them into the global graph nodes and applies graph attention to the global graph nodes to build the long-range reasoning over the entire text in an iterative way. Thirdly, the evidence memory network is designed to alleviate the redundancy problem in the evidence selection by saving the selected result in the previous steps. Extensive experiments show that the proposed model outperforms previous methods on two datasets.