This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The evaluation of summary quality encompasses diverse dimensions such as consistency, coherence, relevance, and fluency. However, existing summarization methods often target a specific dimension, facing challenges in generating well-balanced summaries across multiple dimensions. In this paper, we propose multi-objective reinforcement learning tailored to generate balanced summaries across all four dimensions. We introduce two multi-dimensional optimization (MDO) strategies for adaptive learning: 1) MDO_min, rewarding the current lowest dimension score, and 2) MDO_pro, optimizing multiple dimensions similar to multi-task learning, resolves conflicting gradients across dimensions through gradient projection. Unlike prior ROUGE-based rewards relying on reference summaries, we use a QA-based reward model that aligns with human preferences. Further, we discover the capability to regulate the length of summaries by adjusting the discount factor, seeking the generation of concise yet informative summaries that encapsulate crucial points. Our approach achieved substantial performance gains compared to baseline models on representative summarization datasets, particularly in the overlooked dimensions.
Automatic question generation (QG) serves a wide range of purposes, such as augmenting question-answering (QA) corpora, enhancing chatbot systems, and developing educational materials. Despite its importance, most existing datasets predominantly focus on English, resulting in a considerable gap in data availability for other languages. Cross-lingual transfer for QG (XLT-QG) addresses this limitation by allowing models trained on high-resource language datasets to generate questions in low-resource languages. In this paper, we propose a simple and efficient XLT-QG method that operates without the need for monolingual, parallel, or labeled data in the target language, utilizing a small language model. Our model, trained solely on English QA datasets, learns interrogative structures from a limited set of question exemplars, which are then applied to generate questions in the target language. Experimental results show that our method outperforms several XLT-QG baselines and achieves performance comparable to GPT-3.5-turbo across different languages. Additionally, the synthetic data generated by our model proves beneficial for training multilingual QA models. With significantly fewer parameters than large language models and without requiring additional training for target languages, our approach offers an effective solution for QG and QA tasks across various languages.
Recent efforts have aimed to utilize multilingual pretrained language models (mPLMs) to extend semantic parsing (SP) across multiple languages without requiring extensive annotations. However, achieving zero-shot cross-lingual transfer for SP remains challenging, leading to a performance gap between source and target languages. In this study, we propose Cross-Lingual Back-Parsing (CBP), a novel data augmentation methodology designed to enhance cross-lingual transfer for SP. Leveraging the representation geometry of the mPLMs, CBP synthesizes target language utterances from source meaning representations. Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings, by utilizing only labeled data in the source language and monolingual corpora. Extensive experiments on two cross-language SP benchmarks (Mschema2QA and Xspider) demonstrate that CBP brings substantial gains in the target language. Further analysis of the synthesized utterances shows that our method successfully generates target language utterances with high slot value alignment rates while preserving semantic integrity. Our codes and data are publicly available at https://github.com/deokhk/CBP.
This paper introduces Evalverse, a novel library that streamlines the evaluation of Large Language Models (LLMs) by unifying disparate evaluation tools into a single, user-friendly framework. Evalverse enables individuals with limited knowledge of artificial intelligence to easily request LLM evaluations and receive detailed reports, facilitated by an integration with communication platforms like Slack. Thus, Evalverse serves as a powerful tool for the comprehensive assessment of LLMs, offering both researchers and practitioners a centralized and easily accessible evaluation framework. Finally, we also provide a demo video for Evalverse, showcasing its capabilities and implementation in a two-minute format.
Recently, encoder-only pre-trained models such as BERT have been successfully applied in automated essay scoring (AES) to predict a single overall score. However, studies have yet to explore these models in multi-trait AES, possibly due to the inefficiency of replicating BERT-based models for each trait. Breaking away from the existing sole use of *encoder*, we propose an autoregressive prediction of multi-trait scores (ArTS), incorporating a *decoding* process by leveraging the pre-trained T5. Unlike prior regression or classification methods, we redefine AES as a score-generation task, allowing a single model to predict multiple scores. During decoding, the subsequent trait prediction can benefit by conditioning on the preceding trait scores. Experimental results proved the efficacy of ArTS, showing over 5% average improvements in both prompts and traits.
While machines learn from existing corpora, humans have the unique capability to establish and accept new language systems. This makes human form unique language systems within social groups. Aligning with this, we focus on a gap remaining in addressing translation challenges within social groups, where in-group members utilize unique terminologies. We propose KpopMT dataset, which aims to fill this gap by enabling precise terminology translation, choosing Kpop fandom as an initiative for social groups given its global popularity. Expert translators provide 1k English translations for Korean posts and comments, each annotated with specific terminology within social groups’ language systems. We evaluate existing translation systems including GPT models on KpopMT to identify their failure cases. Results show overall low scores, underscoring the challenges of reflecting group-specific terminologies and styles in translation. We make KpopMT publicly available.
In table-text open-domain question answering, a retriever system retrieves relevant evidence from tables and text to answer questions. Previous studies in table-text open-domain question answering have two common challenges: firstly, their retrievers can be affected by false-positive labels in training datasets; secondly, they may struggle to provide appropriate evidence for questions that require reasoning across the table. To address these issues, we propose Denoised Table-Text Retriever (DoTTeR). Our approach involves utilizing a denoised training dataset with fewer false positive labels by discarding instances with lower question-relevance scores measured through a false positive detection model. Subsequently, we integrate table-level ranking information into the retriever to assist in finding evidence for questions that demand reasoning across the table. To encode this ranking information, we fine-tune a rank-aware column encoder to identify minimum and maximum values within a column. Experimental results demonstrate that DoTTeR significantly outperforms strong baselines on both retrieval recall and downstream QA tasks. Our code is available at https://github.com/deokhk/DoTTeR.
In response to the increasing use of interactive artificial intelligence, the demand for the capacity to handle complex questions has increased. Multi-hop question generation aims to generate complex questions that requires multi-step reasoning over several documents. Previous studies have predominantly utilized end-to-end models, wherein questions are decoded based on the representation of context documents. However, these approaches lack the ability to explain the reasoning process behind the generated multi-hop questions. Additionally, the question rewriting approach, which incrementally increases the question complexity, also has limitations due to the requirement of labeling data for intermediate-stage questions. In this paper, we introduce an end-to-end question rewriting model that increases question complexity through sequential rewriting. The proposed model has the advantage of training with only the final multi-hop questions, without intermediate questions. Experimental results demonstrate the effectiveness of our model in generating complex questions, particularly 3- and 4-hop questions, which are appropriately paired with input answers. We also prove that our model logically and incrementally increases the complexity of questions, and the generated multi-hop questions are also beneficial for training question answering models.
Contemporary neural speech synthesis models have indeed demonstrated remarkable proficiency in synthetic speech generation as they have attained a level of quality comparable to that of human-produced speech. Nevertheless, it is important to note that these achievements have predominantly been verified within the context of high-resource languages such as English. Furthermore, the Tacotron and FastSpeech variants show substantial pausing errors when applied to the Korean language, which affects speech perception and naturalness. In order to address the aforementioned issues, we propose a novel framework that incorporates comprehensive modeling of both syntactic and acoustic cues that are associated with pausing patterns. Remarkably, our framework possesses the capability to consistently generate natural speech even for considerably more extended and intricate out-of-domain (OOD) sentences, despite its training on short audio clips. Architectural design choices are validated through comparisons with baseline models and ablation studies using subjective and objective metrics, thus confirming model performance.
We introduce SOLAR 10.7B, a large language model (LLM) with 10.7 billion parameters, demonstrating superior performance in various natural language processing (NLP) tasks. Inspired by recent efforts to efficiently up-scale LLMs, we present a method for scaling LLMs called depth up-scaling (DUS), which encompasses depthwise scaling and continued pretraining. In contrast to other LLM up-scaling methods that use mixture-of-experts, DUS does not require complex changes to train and inference efficiently. We show experimentally that DUS is simple yet effective in scaling up high-performance LLMs from small ones. Building on the DUS model, we additionally present SOLAR 10.7B-Instruct, a variant fine-tuned for instruction-following capabilities, surpassing Mixtral-8x7B-Instruct. SOLAR 10.7B is publicly available under the Apache 2.0 license, promoting broad access and application in the LLM field.
Research on hate speech has predominantly revolved around the detection and interpretation from textual inputs, leaving verbal content largely unexplored. Moreover, while there has been some limited exploration into hate speech detection within verbal acoustic speech inputs, the aspect of interpretability has been overlooked. As such, we introduce a new task within the audio hate speech detection task domain - we specifically aim to identify specific time frames of hate speech within audio utterances. Towards this, we propose two different approaches, cascading and End-to-End (E2E). The first cascading approach initially converts audio to transcripts, identifies hate speech within these transcripts, and subsequently locates the corresponding audio time frames. Conversely, the second E2E approach processes audio utterances directly, which allows it to pinpoint hate speech within specific time frames. Moreover, due to the lack of explainable audio hate speech datasets that include frame-level rationales, we curated a synthetic audio dataset to train our models. We further validate these models on actual human speech utterances and we find that the E2E approach outperforms the cascading method in terms of audio frame Intersection over Union (IoU) metric. Furthermore, we observe that the inclusion of frame-level rationales significantly enhances hate speech detection accuracy for both E2E and cascading approaches.
Automatic postediting (APE) is an automated process to refine a given machine translation (MT). Recent findings present that existing APE systems are not good at handling high-quality MTs even for a language pair with abundant data resources, English–German: the better the given MT is, the harder it is to decide what parts to edit and how to fix these errors. One possible solution to this problem is to instill deeper knowledge about the target language into the model. Thus, we propose a linguistically motivated method of regularization that is expected to enhance APE models’ understanding of the target language: a loss function that encourages symmetric self-attention on the given MT. Our analysis of experimental results demonstrates that the proposed method helps improving the state-of-the-art architecture’s APE quality for high-quality MTs.
We present our work on Track 2 in the Dialog System Technology Challenges 11 (DSTC11). DSTC11-Track2 aims to provide a benchmark for zero-shot, cross-domain, intent-set induction. In the absence of in-domain training dataset, robust utterance representation that can be used across domains is necessary to induce users’ intentions. To achieve this, we leveraged a multi-domain dialogue dataset to fine-tune the language model and proposed extracting Verb-Object pairs to remove the artifacts of unnecessary information. Furthermore, we devised the method that generates each cluster’s name for the explainability of clustered results. Our approach achieved 3rd place in the precision score and showed superior accuracy and normalized mutual information (NMI) score than the baseline model on various domain datasets.
Automated essay scoring (AES) aims to score essays written for a given prompt, which defines the writing topic. Most existing AES systems assume to grade essays of the same prompt as used in training and assign only a holistic score. However, such settings conflict with real-education situations; pre-graded essays for a particular prompt are lacking, and detailed trait scores of sub-rubrics are required. Thus, predicting various trait scores of unseen-prompt essays (called cross-prompt essay trait scoring) is a remaining challenge of AES. In this paper, we propose a robust model: prompt- and trait relation-aware cross-prompt essay trait scorer. We encode prompt-aware essay representation by essay-prompt attention and utilizing the topic-coherence feature extracted by the topic-modeling mechanism without access to labeled data; therefore, our model considers the prompt adherence of an essay, even in a cross-prompt setting. To facilitate multi-trait scoring, we design trait-similarity loss that encapsulates the correlations of traits. Experiments prove the efficacy of our model, showing state-of-the-art results for all prompts and traits. Significant improvements in low-resource-prompt and inferior traits further indicate our model’s strength.
Conversational question answering (CQA) facilitates an incremental and interactive understanding of a given context, but building a CQA system is difficult for many domains due to the problem of data scarcity. In this paper, we introduce a novel method to synthesize data for CQA with various question types, including open-ended, closed-ended, and unanswerable questions. We design a different generation flow for each question type and effectively combine them in a single, shared framework. Moreover, we devise a hierarchical answerability classification (hierarchical AC) module that improves quality of the synthetic data while acquiring unanswerable questions. Manual inspections show that synthetic data generated with our framework have characteristics very similar to those of human-generated conversations. Across four domains, CQA systems trained on our synthetic data indeed show good performance close to the systems trained on human-annotated data.
This paper studies the practicality of the current state-of-the-art unsupervised methods in neural machine translation (NMT). In ten translation tasks with various data settings, we analyze the conditions under which the unsupervised methods fail to produce reasonable translations. We show that their performance is severely affected by linguistic dissimilarity and domain mismatch between source and target monolingual data. Such conditions are common for low-resource language pairs, where unsupervised learning works poorly. In all of our experiments, supervised and semi-supervised baselines with 50k-sentence bilingual data outperform the best unsupervised results. Our analyses pinpoint the limits of the current unsupervised NMT and also suggest immediate research directions.
We present effective pre-training strategies for neural machine translation (NMT) using parallel corpora involving a pivot language, i.e., source-pivot and pivot-target, leading to a significant improvement in source-target translation. We propose three methods to increase the relation among source, pivot, and target languages in the pre-training: 1) step-wise training of a single model for different language pairs, 2) additional adapter component to smoothly connect pre-trained encoder and decoder, and 3) cross-lingual encoder training via autoencoding of the pivot language. Our methods greatly outperform multilingual models up to +2.6% BLEU in WMT 2019 French-German and German-Czech tasks. We show that our improvements are valid also in zero-shot/zero-resource scenarios.
Document-level context has received lots of attention for compensating neural machine translation (NMT) of isolated sentences. However, recent advances in document-level NMT focus on sophisticated integration of the context, explaining its improvement with only a few selected examples or targeted test sets. We extensively quantify the causes of improvements by a document-level model in general test sets, clarifying the limit of the usefulness of document-level context in NMT. We show that most of the improvements are not interpretable as utilizing the context. We also show that a minimal encoding is sufficient for the context modeling and very long context is not helpful for NMT.
Transfer learning or multilingual model is essential for low-resource neural machine translation (NMT), but the applicability is limited to cognate languages by sharing their vocabularies. This paper shows effective techniques to transfer a pretrained NMT model to a new, unrelated language without shared vocabularies. We relieve the vocabulary mismatch by using cross-lingual word embedding, train a more language-agnostic encoder by injecting artificial noises, and generate synthetic data easily from the pretraining data without back-translation. Our methods do not require restructuring the vocabulary or retraining the model. We improve plain NMT transfer by up to +5.1% BLEU in five low-resource translation tasks, outperforming multilingual joint training by a large margin. We also provide extensive ablation studies on pretrained embedding, synthetic data, vocabulary size, and parameter freezing for a better understanding of NMT transfer.
We propose a novel model architecture and training algorithm to learn bilingual sentence embeddings from a combination of parallel and monolingual data. Our method connects autoencoding and neural machine translation to force the source and target sentence embeddings to share the same space without the help of a pivot language or an additional transformation. We train a multilayer perceptron on top of the sentence embeddings to extract good bilingual sentence pairs from nonparallel or noisy parallel data. Our approach shows promising performance on sentence alignment recovery and the WMT 2018 parallel corpus filtering tasks with only a single model.
Back-translation — data augmentation by translating target monolingual data — is a crucial component in modern neural machine translation (NMT). In this work, we reformulate back-translation in the scope of cross-entropy optimization of an NMT model, clarifying its underlying mathematical assumptions and approximations beyond its heuristic usage. Our formulation covers broader synthetic data generation schemes, including sampling from a target-to-source NMT model. With this formulation, we point out fundamental problems of the sampling-based approaches and propose to remedy them by (i) disabling label smoothing for the target-to-source model and (ii) sampling from a restricted search space. Our statements are investigated on the WMT 2018 German <-> English news translation task.
This paper describes the neural machine translation systems developed at the RWTH Aachen University for the German-English, Chinese-English and Kazakh-English news translation tasks of the Fourth Conference on Machine Translation (WMT19). For all tasks, the final submitted system is based on the Transformer architecture. We focus on improving data filtering and fine-tuning as well as systematically evaluating interesting approaches like unigram language model segmentation and transfer learning. For the De-En task, none of the tested methods gave a significant improvement over last years winning system and we end up with the same performance, resulting in 39.6% BLEU on newstest2019. In the Zh-En task, we show 1.3% BLEU improvement over our last year’s submission, which we mostly attribute to the splitting of long sentences during translation. We further report results on the Kazakh-English task where we gain improvements of 11.1% BLEU over our baseline system. On the same task we present a recent transfer learning approach, which uses half of the free parameters of our submission system and performs on par with it.
Unsupervised learning of cross-lingual word embedding offers elegant matching of words across languages, but has fundamental limitations in translating sentences. In this paper, we propose simple yet effective methods to improve word-by-word translation of cross-lingual embeddings, using only monolingual corpora but without any back-translation. We integrate a language model for context-aware search, and use a novel denoising autoencoder to handle reordering. Our system surpasses state-of-the-art unsupervised translation systems without costly iterative training. We also analyze the effect of vocabulary size and denoising type on the translation performance, which provides better understanding of learning the cross-lingual word embedding and its usage in translation.
This paper describes the unsupervised neural machine translation (NMT) systems of the RWTH Aachen University developed for the English ↔ German news translation task of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). Our work is based on iterative back-translation using a shared encoder-decoder NMT model. We extensively compare different vocabulary types, word embedding initialization schemes and optimization methods for our model. We also investigate gating and weight normalization for the word embedding layer.
This paper describes the statistical machine translation systems developed at RWTH Aachen University for the German→English, English→Turkish and Chinese→English translation tasks of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). We use ensembles of neural machine translation systems based on the Transformer architecture. Our main focus is on the German→English task where we to all automatic scored first with respect metrics provided by the organizers. We identify data selection, fine-tuning, batch size and model dimension as important hyperparameters. In total we improve by 6.8% BLEU over our last year’s submission and by 4.8% BLEU over the winning system of the 2017 German→English task. In English→Turkish task, we show 3.6% BLEU improvement over the last year’s winning system. We further report results on the Chinese→English task where we improve 2.2% BLEU on average over our baseline systems but stay behind the 2018 winning systems.
This paper describes the submission of RWTH Aachen University for the De→En parallel corpus filtering task of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). We use several rule-based, heuristic methods to preselect sentence pairs. These sentence pairs are scored with count-based and neural systems as language and translation models. In addition to single sentence-pair scoring, we further implement a simple redundancy removing heuristic. Our best performing corpus filtering system relies on recurrent neural language models and translation models based on the transformer architecture. A model trained on 10M randomly sampled tokens reaches a performance of 9.2% BLEU on newstest2018. Using our filtering and ranking techniques we achieve 34.8% BLEU.
We address for the first time unsupervised training for a translation task with hundreds of thousands of vocabulary words. We scale up the expectation-maximization (EM) algorithm to learn a large translation table without any parallel text or seed lexicon. First, we solve the memory bottleneck and enforce the sparsity with a simple thresholding scheme for the lexicon. Second, we initialize the lexicon training with word classes, which efficiently boosts the performance. Our methods produced promising results on two large-scale unsupervised translation tasks.