Yufan Zhou
2024
Navigating the Dual Facets: A Comprehensive Evaluation of Sequential Memory Editing in Large Language Models
Zihao Lin
|
Mohammad Beigi
|
Hongxuan Li
|
Yufan Zhou
|
Yuxiang Zhang
|
Qifan Wang
|
Wenpeng Yin
|
Lifu Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Memory Editing (ME) has emerged as an efficient method to modify erroneous facts or inject new facts into Large Language Models (LLMs). Two mainstream ME methods exist: parameter-modifying ME and parameter-preserving ME (integrating extra modules while preserving original parameters). Regrettably, previous studies on ME evaluation have two critical limitations: (i) evaluating LLMs with single edit only, neglecting the need for continuous editing, and (ii) evaluations focusing solely on basic factual triples, overlooking broader LLM capabilities like logical reasoning and reading understanding. This study addresses these limitations with contributions threefold: (i) We explore how ME affects a wide range of fundamental capabilities of LLMs under sequential editing. Experimental results reveal an intriguing phenomenon: Most parameter-modifying ME consistently degrade performance across all tasks after a few sequential edits. In contrast, parameter-preserving ME effectively maintains LLMs’ fundamental capabilities but struggles to accurately recall edited knowledge presented in a different format. (ii) We extend our evaluation to different editing settings, such as layers to edit, model size, instruction tuning, etc. Experimental findings indicate several strategies that can potentially mitigate the adverse effects of ME. (iii) We further explain why parameter-modifying damages LLMs from three dimensions: parameter changes after editing, language modeling capability, and the in-context learning capability. Our in-depth study advocates more careful use of ME in real-world scenarios.
TextLap: Customizing Language Models for Text-to-Layout Planning
Jian Chen
|
Ruiyi Zhang
|
Yufan Zhou
|
Jennifer Healey
|
Jiuxiang Gu
|
Zhiqiang Xu
|
Changyou Chen
Findings of the Association for Computational Linguistics: EMNLP 2024
Automatic generation of graphical layouts is crucial for many real-world applications, including designing posters, flyers, advertisements, and graphical user interfaces. Given the incredible ability of Large language models (LLMs) in both natural language understanding and generation, we believe that we could customize an LLM to help people create compelling graphical layouts starting with only text instructions from the user. We call our method TextLap (text-based layout planning). It uses a curated instruction-based layout planning dataset (InsLap) to customize LLMs as a graphic designer. Human annotators are asked to build a benchmark to evaluate different layout planning models. We demonstrate the effectiveness of TextLap and show that it outperforms strong baselines, including GPT-4 based methods, for document generation and graphical design benchmarks.
Search
Co-authors
- Changyou Chen 1
- Hongxuan Li 1
- Jennifer Healey 1
- Jian Chen 1
- Jiuxiang Gu 1
- show all...