This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items’ semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumber-some training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: https://github.com/Ravoxsg/efficient_unified_crs.
The massive parameters and computational demands hinder the widespread application of Large Language Models (LLMs). Network pruning provides a practical solution to this problem. However, existing pruning works for LLMs mainly focus on unstructured pruning or necessitate post-pruning fine-tuning. The former relies on special hardware to accelerate computation, while the latter may need substantial computational resources. In this paper, we introduce a retraining-free structured pruning method called SoBP (Structured Optimal Brain Pruning). It leverages global first-order information to select pruning structures, then refines them with a local greedy approach, and finally adopts module-wise reconstruction to mitigate information loss. We assess the effectiveness of SoBP across 14 models from 3 LLM families on 8 distinct datasets. Experimental results demonstrate that SoBP outperforms current state-of-the-art methods.
Ensuring the trustworthiness of large language models (LLMs) is crucial. Most studies concentrate on fully pre-trained LLMs to better understand and improve LLMs’ trustworthiness. In this paper, to reveal the untapped potential of pre-training, we pioneer the exploration of LLMs’ trustworthiness during this period, focusing on five key dimensions: reliability, privacy, toxicity, fairness, and robustness. To begin with, we apply linear probing to LLMs. The high probing accuracy suggests that LLMs in early pre-training can already distinguish concepts in each trustworthiness dimension. Therefore, to further uncover the hidden possibilities of pre-training, we extract steering vectors from a LLM’s pre-training checkpoints to enhance the LLM’s trustworthiness. Finally, inspired by the theoretical result that mutual information estimation is bounded by linear probing accuracy, we also probe LLMs with mutual information to investigate the dynamics of trustworthiness during pre-training. We are the first to observe a similar two-phase phenomenon: fitting and compression. This research provides an initial exploration of trustworthiness modeling during LLM pre-training, seeking to unveil new insights and spur further developments in the field.
Transformer Architecture Search (TAS) methods aim to automate searching for the optimal Transformer architecture configurations for a given task. However, they are impeded by the prohibitive cost of evaluating Transformer architectures. Recently, several Zero-Shot TAS methods have been proposed to mitigate this problem by utilizing zero-cost proxies to evaluate Transformer architectures without training. Unfortunately, they are limited to specific computer vision or natural language processing tasks. Nonetheless, most of them are developed based on empirical observations and lack theoretical guarantees. To solve this problem, we develop a new zero-cost proxy called NTSR that combines two theoretically-inspired indicators to measure the trainability and expressivity of Transformer networks separately. We then integrate it into an effective regularized evolution framework called ETAS to demonstrate its efficacy on various tasks. The results show that our proposed NTSR proxy can consistently achieve a higher correlation with the true performance of Transformer networks on both computer vision and natural language processing tasks. Further, it can significantly accelerate the search process for finding the best-performing Transformer architecture configurations.
Long document question answering (DocQA) aims to answer questions from long documents over 10k words. They usually contain content structures such as sections, sub-sections, and paragraph demarcations. However, the indexing methods of long documents remain under-explored, while existing systems generally employ fixed-length chunking. As they do not consider content structures, the resultant chunks can exclude vital information or include irrelevant content. Motivated by this, we propose the **M**ulti-view **C**ontent-aware indexing (**MC-indexing**) for more effective long DocQA via (i) segment structured document into content chunks, and (ii) represent each content chunk in raw-text, keywords, and summary views. We highlight that MC-indexing requires neither training nor fine-tuning. Having plug-and-play capability, it can be seamlessly integrated with any retrievers to boost their performance. Besides, we propose a long DocQA dataset that includes not only question-answer pair, but also document structure and answer scope. When compared to state-of-art chunking schemes, MC-indexing has significantly increased the recall by **42.8%**, **30.0%**, **23.9%**, and **16.3%** via top k = 1.5, 3, 5, and 10 respectively. These improved scores are the average of 8 widely used retrievers (2 sparse and 6 dense) via extensive experiments.
Large Language Models (LLMs) have transformed natural language processing tasks successfully. Yet, their large size and high computational needs pose challenges for practical use, especially in resource-limited settings. Model compression has emerged as a key research area to address these challenges. This paper presents a survey of model compression techniques for LLMs. We cover methods like quantization, pruning, and knowledge distillation, highlighting recent advancements. We also discuss benchmarking strategies and evaluation metrics crucial for assessing compressed LLMs. This survey offers valuable insights for researchers and practitioners, aiming to enhance efficiency and real-world applicability of LLMs while laying a foundation for future advancements.
With the evolution of pre-trained language models, current open-domain dialogue systems have achieved great progress in conducting one-session conversations. In contrast, Multi-Session Conversation (MSC), which consists of multiple sessions over a long term with the same user, is under-investigated. In this paper, we propose History-Aware Hierarchical Transformer (HAHT) for multi-session open-domain dialogue. HAHT maintains a long-term memory of history conversations and utilizes history information to understand current conversation context and generate well-informed and context-relevant responses. Specifically, HAHT first encodes history conversation sessions hierarchically into a history memory. Then, HAHT leverages historical information to facilitate the understanding of the current conversation context by encoding the history memory together with the current context with attention-based mechanisms. Finally, to explicitly utilize historical information, HAHT uses a history-aware response generator that switches between a generic vocabulary and a history-aware vocabulary. Experimental results on a large-scale MSC dataset suggest that the proposed HAHT model consistently outperforms baseline models. Human evaluation results support that HAHT generates more human-like, context-relevant, and history-relevant responses than baseline models.
Conversational Recommendation Systems recommend items through language based interactions with users. In order to generate naturalistic conversations and effectively utilize knowledge graphs (KGs) containing background information, we propose a novel Bag-of-Entities loss, which encourages the generated utterances to mention concepts related to the item being recommended, such as the genre or director of a movie. We also propose an alignment loss to further integrate KG entities into the response generation network. Experiments on the large-scale REDIAL dataset demonstrate that the proposed system consistently outperforms state-of-the-art baselines.
Generating informative and appropriate responses is challenging but important for building human-like dialogue systems. Although various knowledge-grounded conversation models have been proposed, these models have limitations in utilizing knowledge that infrequently occurs in the training data, not to mention integrating unseen knowledge into conversation generation. In this paper, we propose an Entity-Agnostic Representation Learning (EARL) method to introduce knowledge graphs to informative conversation generation. Unlike traditional approaches that parameterize the specific representation for each entity, EARL utilizes the context of conversations and the relational structure of knowledge graphs to learn the category representation for entities, which is generalized to incorporating unseen entities in knowledge graphs into conversation generation. Automatic and manual evaluations demonstrate that our model can generate more informative, coherent, and natural responses than baseline models.
Empathetic conversational models have been shown to improve user satisfaction and task outcomes in numerous domains. In Psychology, persona has been shown to be highly correlated to personality, which in turn influences empathy. In addition, our empirical analysis also suggests that persona plays an important role in empathetic conversations. To this end, we propose a new task towards persona-based empathetic conversations and present the first empirical study on the impact of persona on empathetic responding. Specifically, we first present a novel large-scale multi-domain dataset for persona-based empathetic conversations. We then propose CoBERT, an efficient BERT-based response selection model that obtains the state-of-the-art performance on our dataset. Finally, we conduct extensive experiments to investigate the impact of persona on empathetic responding. Notably, our results show that persona improves empathetic responding more when CoBERT is trained on empathetic conversations than non-empathetic ones, establishing an empirical link between persona and empathy in human conversations.