Yiyang Nan
2024
Learning to Generate Instruction Tuning Datasets for Zero-Shot Task Adaptation
Nihal Nayak
|
Yiyang Nan
|
Avi Trost
|
Stephen Bach
Findings of the Association for Computational Linguistics: ACL 2024
We introduce Bonito, an open-source model for conditional task generation that converts unannotated text into task-specific training datasets for instruction tuning. We aim to enable zero-shot task adaptation of large language models on users’ specialized, private data. We train Bonito by fine-tuning a pretrained large language model on a new large-scale dataset with 1.65M examples created by remixing existing instruction tuning datasets into meta-templates. The meta-templates for a dataset produce training examples where the input is the unannotated text and the task attribute and the output consists of the instruction and the response. We use Bonito to generate synthetic tasks for seven datasets from specialized domains with unannotated text across three task types—yes-no question answering, extractive question answering, and natural language inference—and adapt language models. We show that Bonito significantly improves the average performance of pretrained and instruction tuned models over the de facto self supervised baseline. For example, adapting Mistral-Instruct-v2 and instruction tuned variants of Mistral and Llama2 with Bonito improves the strong zero-shot performance by 22.1 F1 points whereas the next word prediction objective undoes some of the benefits of instruction tuning and reduces the average performance by 0.8 F1 points. We conduct additional experiments with Bonito to understand the effects of the domain, the size of the training set, and the choice of alternative synthetic task generators. Overall, we show that learning with synthetic instruction tuning datasets is an effective way to adapt language models to new domains. The model, dataset, and code are available at https://github.com/BatsResearch/bonito.
SaSR-Net: Source-Aware Semantic Representation Network for Enhancing Audio-Visual Question Answering
Tianyu Yang
|
Yiyang Nan
|
Lisen Dai
|
Zhenwen Liang
|
Yapeng Tian
|
Xiangliang Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
Audio-Visual Question Answering (AVQA) is a challenging task that involves answering questions based on both auditory and visual information in videos. A significant challenge is interpreting complex multi-modal scenes, which include both visual objects and sound sources, and connecting them to the given question. In this paper, we introduce the Source-aware Semantic Representation Network (SaSR-Net), a novel model designed for AVQA. SaSR-Net utilizes source-wise learnable tokens to efficiently capture and align audio-visual elements with the corresponding question. It streamlines the fusion of audio and visual information using spatial and temporal attention mechanisms to identify answers in multi-modal scenes. Extensive experiments on the Music-AVQA and AVQA-Yang datasets show that SaSR-Net outperforms state-of-the-art AVQA methods. We will release our source code and pre-trained models.
Search
Co-authors
- Avi Trost 1
- Lisen Dai 1
- Nihal Nayak 1
- Stephen Bach 1
- Tianyu Yang 1
- show all...