Xintao Wang


2024

pdf
InCharacter: Evaluating Personality Fidelity in Role-Playing Agents through Psychological Interviews
Xintao Wang | Yunze Xiao | Jen-tse Huang | Siyu Yuan | Rui Xu | Haoran Guo | Quan Tu | Yaying Fei | Ziang Leng | Wei Wang | Jiangjie Chen | Cheng Li | Yanghua Xiao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Role-playing agents (RPAs), powered by large language models, have emerged as a flourishing field of applications. However, a key challenge lies in assessing whether RPAs accurately reproduce the personas of target characters, namely their character fidelity. Existing methods mainly focus on the knowledge and linguistic patterns of characters. This paper, instead, introduces a novel perspective to evaluate the personality fidelity of RPAs with psychological scales. Overcoming drawbacks of previous self-report assessments on RPAs, we propose InCharacter, namely **In**terviewing **Character** agents for personality tests. Experiments include various types of RPAs and LLMs, covering 32 distinct characters on 14 widely used psychological scales. The results validate the effectiveness of InCharacter in measuring RPA personalities. Then, with InCharacter, we show that state-of-the-art RPAs exhibit personalities highly aligned with the human-perceived personalities of the characters, achieving an accuracy up to 80.7%.

pdf
Evaluating Character Understanding of Large Language Models via Character Profiling from Fictional Works
Xinfeng Yuan | Siyu Yuan | Yuhan Cui | Tianhe Lin | Xintao Wang | Rui Xu | Jiangjie Chen | Deqing Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have demonstrated impressive performance and spurred numerous AI applications, in which role-playing agents (RPAs) are particularly popular, especially for fictional characters. The prerequisite for these RPAs lies in the capability of LLMs to understand characters from fictional works. Previous efforts have evaluated this capability via basic classification tasks or characteristic imitation, failing to capture the nuanced character understanding with LLMs. In this paper, we propose evaluating LLMs’ character understanding capability via the character profiling task, i.e., summarizing character profiles from corresponding materials, a widely adopted yet understudied practice for RPA development. Specifically, we construct the CROSS dataset from literature experts and assess the generated profiles by comparing them with ground truth references and evaluating their applicability in downstream tasks. Our experiments, which cover various summarization methods and LLMs, have yielded promising results. These results strongly validate the character understanding capability of LLMs. Resources are available at https://github.com/Joanna0123/character_profiling.

pdf
Light Up the Shadows: Enhance Long-Tailed Entity Grounding with Concept-Guided Vision-Language Models
Yikai Zhang | Qianyu He | Xintao Wang | Siyu Yuan | Jiaqing Liang | Yanghua Xiao
Findings of the Association for Computational Linguistics: ACL 2024

Multi-Modal Knowledge Graphs (MMKGs) have proven valuable for various downstream tasks. However, scaling them up is challenging because building large-scale MMKGs often introduces mismatched images (i.e., noise). Most entities in KGs belong to the long tail, meaning there are few images of them available online. This scarcity makes it difficult to determine whether a found image matches the entity. To address this, we draw on the Triangle of Reference Theory and suggest enhancing vision-language models with concept guidance. Specifically, we introduce COG, a two-stage framework with COncept-Guided vision-language models. The framework comprises a Concept Integration module, which effectively identifies image-text pairs of long-tailed entities, and an Evidence Fusion module, which offers explainability and enables human verification. To demonstrate the effectiveness of COG, we create a dataset of 25k image-text pairs of long-tailed entities. Our comprehensive experiments show that COG not only improves the accuracy of recognizing long-tailed image-text pairs compared to baselines but also offers flexibility and explainability.

pdf
Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data
Yiting Ran | Xintao Wang | Rui Xu | Xinfeng Yuan | Jiaqing Liang | Yanghua Xiao | Deqing Yang
Findings of the Association for Computational Linguistics: EMNLP 2024

Role-playing agents (RPA) have been a popular application area for large language models (LLMs), attracting significant interest from both industry and academia. While existing RPAs well portray the characters’ knowledge and tones, they face challenges in capturing their minds, especially for small role-playing language models (RPLMs). In this paper, we propose to enhance RPLMs via personality-indicative data. Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters. Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations.