Xing Qian


2024

pdf
HateModerate: Testing Hate Speech Detectors against Content Moderation Policies
Jiangrui Zheng | Xueqing Liu | Mirazul Haque | Xing Qian | Guanqun Yang | Wei Yang
Findings of the Association for Computational Linguistics: NAACL 2024

To protect users from massive hateful content, existing works studied automated hate speech detection. Despite the existing efforts, one question remains: Do automated hate speech detectors conform to social media content policies? A platform’s content policies are a checklist of content moderated by the social media platform. Because content moderation rules are often uniquely defined, existing hate speech datasets cannot directly answer this question. This work seeks to answer this question by creating HateModerate, a dataset for testing the behaviors of automated content moderators against content policies. First, we engage 28 annotators and GPT in a six-step annotation process, resulting in a list of hateful and non-hateful test suites matching each of Facebook’s 41 hate speech policies. Second, we test the performance of state-of-the-art hate speech detectors against HateModerate, revealing substantial failures these models have in their conformity to the policies. Third, using HateModerate, we augment the training data of a top-downloaded hate detector on HuggingFace. We observe significant improvement in the models’ conformity to content policies while having comparable scores on the original test data. Our dataset and code can be found on https://github.com/stevens-textmining/HateModerate.

2023

pdf
What Clued the AI Doctor In? On the Influence of Data Source and Quality for Transformer-Based Medical Self-Disclosure Detection
Mina Valizadeh | Xing Qian | Pardis Ranjbar-Noiey | Cornelia Caragea | Natalie Parde
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Recognizing medical self-disclosure is important in many healthcare contexts, but it has been under-explored by the NLP community. We conduct a three-pronged investigation of this task. We (1) manually expand and refine the only existing medical self-disclosure corpus, resulting in a new, publicly available dataset of 3,919 social media posts with clinically validated labels and high compatibility with the existing task-specific protocol. We also (2) study the merits of pretraining task domain and text style by comparing Transformer-based models for this task, pretrained from general, medical, and social media sources. Our BERTweet condition outperforms the existing state of the art for this task by a relative F1 score increase of 16.73%. Finally, we (3) compare data augmentation techniques for this task, to assess the extent to which medical self-disclosure data may be further synthetically expanded. We discover that this task poses many challenges for data augmentation techniques, and we provide an in-depth analysis of identified trends.