Xin Guan


2024

pdf
HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
Rishi Kalra | Zekun Wu | Ayesha Gulley | Airlie Hilliard | Xin Guan | Adriano Koshiyama | Philip Colin Treleaven
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)

While Large Language Models (LLMs) excel in text generation and question-answering, their effectiveness in AI legal and policy applications is limited by outdated knowledge, hallucinations, and inadequate reasoning in complex contexts. Retrieval-Augmented Generation (RAG) systems improve response accuracy by integrating external knowledge but struggle with retrieval errors, poor context integration, and high costs, particularly in interpreting AI legal texts. This paper introduces a Hybrid Parameter-Adaptive RAG (HyPA-RAG) system tailored for AI legal and policy, exemplified by NYC Local Law 144 (LL144). HyPA-RAG uses a query complexity classifier for adaptive parameter tuning, a hybrid retrieval strategy combining dense, sparse, and knowledge graph methods, and an evaluation framework with specific question types and metrics. By dynamically adjusting parameters, HyPA-RAG significantly improves retrieval accuracy and response fidelity. Testing on LL144 shows enhanced correctness, faithfulness, and contextual precision, addressing the need for adaptable NLP systems in complex, high-stakes AI legal and policy applications.

pdf
JobFair: A Framework for Benchmarking Gender Hiring Bias in Large Language Models
Ze Wang | Zekun Wu | Xin Guan | Michael Thaler | Adriano Koshiyama | Skylar Lu | Sachin Beepath | Ediz Ertekin | Maria Perez-Ortiz
Findings of the Association for Computational Linguistics: EMNLP 2024

The use of Large Language Models (LLMs) in hiring has led to legislative actions to protect vulnerable demographic groups. This paper presents a novel framework for benchmarking hierarchical gender hiring bias in Large Language Models (LLMs) for resume scoring, revealing significant issues of reverse gender hiring bias and overdebiasing. Our contributions are fourfold: Firstly, we introduce a new construct grounded in labour economics, legal principles, and critiques of current bias benchmarks: hiring bias can be categorized into two types: Level bias (difference in the average outcomes between demographic counterfactual groups) and Spread bias (difference in the variance of outcomes between demographic counterfactual groups); Level bias can be further subdivided into statistical bias (i.e. changing with non-demographic content) and taste-based bias (i.e. consistent regardless of non-demographic content). Secondly, the framework includes rigorous statistical and computational hiring bias metrics, such as Rank After Scoring (RAS), Rank-based Impact Ratio, Permutation Test, and Fixed Effects Model. Thirdly, we analyze gender hiring biases in ten state-of-the-art LLMs. Seven out of ten LLMs show significant biases against males in at least one industry. An industry-effect regression reveals that the healthcare industry is the most biased against males. Moreover, we found that the bias performance remains invariant with resume content for eight out of ten LLMs. This indicates that the bias performance measured in this paper might apply to other resume datasets with different resume qualities. Fourthly, we provide a user-friendly demo and resume dataset to support the adoption and practical use of the framework, which can be generalized to other social traits and tasks.

pdf
CEPT: A Contrast-Enhanced Prompt-Tuning Framework for Emotion Recognition in Conversation
Qingqing Gao | Jiuxin Cao | Biwei Cao | Xin Guan | Bo Liu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Emotion Recognition in Conversation (ERC) has attracted increasing attention due to its wide applications in public opinion analysis, empathetic conversation generation, and so on. However, ERC research suffers from the problems of data imbalance and the presence of similar linguistic expressions for different emotions. These issues can result in limited learning for minority emotions, biased predictions for common emotions, and the misclassification of different emotions with similar linguistic expressions. To alleviate these problems, we propose a Contrast-Enhanced Prompt-Tuning (CEPT) framework for ERC. We transform the ERC task into a Masked Language Modeling (MLM) generation task and generate the emotion for each utterance in the conversation based on the prompt-tuning of the Pre-trained Language Model (PLM), where a novel mixed prompt template and a label mapping strategy are introduced for better context and emotion feature modeling. Moreover, Supervised Contrastive Learning (SCL) is employed to help the PLM mine more information from the labels and learn a more discriminative representation space for utterances with different emotions. We conduct extensive experiments and the results demonstrate that CEPT outperforms the state-of-the-art methods on all three benchmark datasets and excels in recognizing minority emotions.

2022

pdf
CORN: Co-Reasoning Network for Commonsense Question Answering
Xin Guan | Biwei Cao | Qingqing Gao | Zheng Yin | Bo Liu | Jiuxin Cao
Proceedings of the 29th International Conference on Computational Linguistics

Commonsense question answering (QA) requires machines to utilize the QA content and external commonsense knowledge graph (KG) for reasoning when answering questions. Existing work uses two independent modules to model the QA contextual text representation and relationships between QA entities in KG, which prevents information sharing between modules for co-reasoning. In this paper, we propose a novel model, Co-Reasoning Network (CORN), which adopts a bidirectional multi-level connection structure based on Co-Attention Transformer. The structure builds bridges to connect each layer of the text encoder and graph encoder, which can introduce the QA entity relationship from KG to the text encoder and bring contextual text information to the graph encoder, so that these features can be deeply interactively fused to form comprehensive text and graph node representations. Meanwhile, we propose a QA-aware node based KG subgraph construction method. The QA-aware nodes aggregate the question entity nodes and the answer entity nodes, and further guide the expansion and construction process of the subgraph to enhance the connectivity and reduce the introduction of noise. We evaluate our model on QA benchmarks in the CommonsenseQA and OpenBookQA datasets, and CORN achieves state-of-the-art performance.