Xin Alex Lin


2024

pdf
MGCL: Multi-Granularity Clue Learning for Emotion-Cause Pair Extraction via Cross-Grained Knowledge Distillation
Yang Yu | Xin Alex Lin | Changqun Li | Shizhou Huang | Liang He
Findings of the Association for Computational Linguistics: EMNLP 2024

Emotion-cause pair extraction (ECPE) aims to identify emotion clauses and their corresponding cause clauses within a document. Traditional methods often rely on coarse-grained clause-level annotations, which can overlook valuable fine-grained clues. To address this issue, we propose Multi-Granularity Clue Learning (MGCL), a novel approach designed to capture fine-grained emotion-cause clues from a weakly-supervised perspective efficiently. In MGCL, a teacher model is leveraged to give sub-clause clues without needing fine-grained annotated labels and guides a student model to identify clause-level emotion-cause pairs. Furthermore, we explore domain-invariant extra-clause clues under the teacher model’s advice to enhance the learning process. Experimental results on the benchmark dataset demonstrate that our method achieves state-of-the-art performance while offering improved interpretability.