Aspect-category-based sentiment analysis (ACSA), which aims to identify aspect categories and predict their sentiments has been intensively studied due to its wide range of NLP applications. Most approaches mainly utilize intrasentential features. However, a review often includes multiple different aspect categories, and some of them do not explicitly appear in the review. Even in a sentence, there is more than one aspect category with its sentiments, and they are entangled intra-sentence, which makes the model fail to discriminately preserve all sentiment characteristics. In this paper, we propose an enhanced coherence-aware network with hierarchical disentanglement (ECAN) for ACSA tasks. Specifically, we explore coherence modeling to capture the contexts across the whole review and to help the implicit aspect and sentiment identification. To address the issue of multiple aspect categories and sentiment entanglement, we propose a hierarchical disentanglement module to extract distinct categories and sentiment features. Extensive experimental and visualization results show that our ECAN effectively decouples multiple categories and sentiments entangled in the coherence representations and achieves state-of-the-art (SOTA) performance. Our codes and data are available online: https://github.com/cuijin-23/ECAN.
Multimodal sentiment analysis is the challenging research area that attends to the fusion of multiple heterogeneous modalities. The main challenge is the occurrence of some missing modalities during the multimodal fusion procedure. However, the existing techniques require all modalities as input, thus are sensitive to missing modalities at predicting time. In this work, the coupled-translation fusion network (CTFN) is firstly proposed to model bi-direction interplay via couple learning, ensuring the robustness in respect to missing modalities. Specifically, the cyclic consistency constraint is presented to improve the translation performance, allowing us directly to discard decoder and only embraces encoder of Transformer. This could contribute to a much lighter model. Due to the couple learning, CTFN is able to conduct bi-direction cross-modality intercorrelation parallelly. Based on CTFN, a hierarchical architecture is further established to exploit multiple bi-direction translations, leading to double multimodal fusing embeddings compared with traditional translation methods. Moreover, the convolution block is utilized to further highlight explicit interactions among those translations. For evaluation, CTFN was verified on two multimodal benchmarks with extensive ablation studies. The experiments demonstrate that the proposed framework achieves state-of-the-art or often competitive performance. Additionally, CTFN still maintains robustness when considering missing modality.