Vaibhav Adlakha


2024

pdf
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Vaibhav Adlakha | Parishad BehnamGhader | Xing Han Lu | Nicholas Meade | Siva Reddy
Transactions of the Association for Computational Linguistics, Volume 12

Instruction-following models are attractive alternatives to fine-tuned approaches for question answering (QA). By simply prepending relevant documents and an instruction to their input, these models can be adapted to various information domains and tasks without additional training. However, these models tend to produce verbose responses with supplementary information, which makes traditional QA metrics like exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we evaluate instruction-following models along two fronts: 1) how well they satisfy user’s information need (correctness), and 2) whether they disseminate information supported by the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness and propose simple token-overlap metrics that correlate highly with human judgments. Our analysis reveals that for correctness, instruction-following models perform comparably to models specifically fine-tuned for that task. However, they struggle to accurately judge the relevance of the provided knowledge and often hallucinate in their responses. We hope our work encourages more holistic evaluation of instruction-following models for QA. Our code and human annotation data is available at https://github.com/McGill-NLP/instruct-qa.

2022

pdf
Image Retrieval from Contextual Descriptions
Benno Krojer | Vaibhav Adlakha | Vibhav Vineet | Yash Goyal | Edoardo Ponti | Siva Reddy
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current vision-and-language models master this ability, we devise a new multimodal challenge, Image Retrieval from Contextual Descriptions (ImageCoDe). In particular, models are tasked with retrieving the correct image from a set of 10 minimally contrastive candidates based on a contextual description. As such, each description contains only the details that help distinguish between images. Because of this, descriptions tend to be complex in terms of syntax and discourse and require drawing pragmatic inferences. Images are sourced from both static pictures and video frames. We benchmark several state-of-the-art models, including both cross-encoders such as ViLBERT and bi-encoders such as CLIP, on ImageCoDe.Our results reveal that these models dramatically lag behind human performance: the best variant achieves an accuracy of 20.9 on video frames and 59.4 on static pictures, compared with 90.8 in humans. Furthermore, we experiment with new model variants that are better equipped to incorporate visual and temporal context into their representations, which achieve modest gains. Our hope is that ImageCoDE will foster progress in grounded language understanding by encouraging models to focus on fine-grained visual differences.

pdf
Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Tokens and Retraining
Andreas Madsen | Nicholas Meade | Vaibhav Adlakha | Siva Reddy
Findings of the Association for Computational Linguistics: EMNLP 2022

To explain NLP models a popular approach is to use importance measures, such as attention, which inform input tokens are important for making a prediction. However, an open question is how well these explanations accurately reflect a model’s logic, a property called faithfulness. To answer this question, we propose Recursive ROAR, a new faithfulness metric. This works by recursively masking allegedly important tokens and then retraining the model. The principle is that this should result in worse model performance compared to masking random tokens. The result is a performance curve given a masking-ratio. Furthermore, we propose a summarizing metric using area-between-curves (ABC), which allows for easy comparison across papers, models, and tasks. We evaluate 4 different importance measures on 8 different datasets, using both LSTM-attention models and RoBERTa models. We find that the faithfulness of importance measures is both model-dependent and task-dependent. This conclusion contradicts previous evaluations in both computer vision and faithfulness of attention literature.

pdf
TopiOCQA: Open-domain Conversational Question Answering with Topic Switching
Vaibhav Adlakha | Shehzaad Dhuliawala | Kaheer Suleman | Harm de Vries | Siva Reddy
Transactions of the Association for Computational Linguistics, Volume 10

In a conversational question answering scenario, a questioner seeks to extract information about a topic through a series of interdependent questions and answers. As the conversation progresses, they may switch to related topics, a phenomenon commonly observed in information-seeking search sessions. However, current datasets for conversational question answering are limiting in two ways: 1) they do not contain topic switches; and 2) they assume the reference text for the conversation is given, that is, the setting is not open-domain. We introduce TopiOCQA (pronounced Tapioca), an open-domain conversational dataset with topic switches based on Wikipedia. TopiOCQA contains 3,920 conversations with information-seeking questions and free-form answers. On average, a conversation in our dataset spans 13 question-answer turns and involves four topics (documents). TopiOCQA poses a challenging test-bed for models, where efficient retrieval is required on multiple turns of the same conversation, in conjunction with constructing valid responses using conversational history. We evaluate several baselines, by combining state-of-the-art document retrieval methods with neural reader models. Our best model achieves F1 of 55.8, falling short of human performance by 14.2 points, indicating the difficulty of our dataset. Our dataset and code are available at https://mcgill-nlp.github.io/topiocqa.

2020

pdf
OpenIE6: Iterative Grid Labeling and Coordination Analysis for Open Information Extraction
Keshav Kolluru | Vaibhav Adlakha | Samarth Aggarwal | Mausam | Soumen Chakrabarti
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

A recent state-of-the-art neural open information extraction (OpenIE) system generates extractions iteratively, requiring repeated encoding of partial outputs. This comes at a significant computational cost. On the other hand,sequence labeling approaches for OpenIE are much faster, but worse in extraction quality. In this paper, we bridge this trade-off by presenting an iterative labeling-based system that establishes a new state of the art for OpenIE, while extracting 10x faster. This is achieved through a novel Iterative Grid Labeling (IGL) architecture, which treats OpenIE as a 2-D grid labeling task. We improve its performance further by applying coverage (soft) constraints on the grid at training time. Moreover, on observing that the best OpenIE systems falter at handling coordination structures, our OpenIE system also incorporates a new coordination analyzer built with the same IGL architecture. This IGL based coordination analyzer helps our OpenIE system handle complicated coordination structures, while also establishing a new state of the art on the task of coordination analysis, with a 12.3 pts improvement in F1 over previous analyzers. Our OpenIE system - OpenIE6 - beats the previous systems by as much as 4 pts in F1, while being much faster.