Udit Arora


2023

pdf
MEMEX: Detecting Explanatory Evidence for Memes via Knowledge-Enriched Contextualization
Shivam Sharma | Ramaneswaran S | Udit Arora | Md. Shad Akhtar | Tanmoy Chakraborty
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Memes are a powerful tool for communication over social media. Their affinity for evolving across politics, history, and sociocultural phenomena renders them an ideal vehicle for communication. To comprehend the subtle message conveyed within a meme, one must understand the relevant background that facilitates its holistic assimilation. Besides digital archiving of memes and their metadata by a few websites like knowyourmeme.com, currently, there is no efficient way to deduce a meme’s context dynamically. In this work, we propose a novel task, MEMEX - given a meme and a related document, the aim is to mine the context that succinctly explains the background of the meme. At first, we develop MCC (Meme Context Corpus), a novel dataset for MEMEX. Further, to benchmark MCC, we propose MIME (MultImodal Meme Explainer), a multimodal neural framework that uses external knowledge-enriched meme representation and a multi-level approach to capture the cross-modal semantic dependencies between the meme and the context. MIME surpasses several unimodal and multimodal systems and yields an absolute improvement of 4% F1-score over the best baseline. Lastly, we conduct detailed analyses of MIME’s performance, highlighting the aspects that could lead to optimal modeling of cross-modal contextual associations.

2021

pdf
Types of Out-of-Distribution Texts and How to Detect Them
Udit Arora | William Huang | He He
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Despite agreement on the importance of detecting out-of-distribution (OOD) examples, there is little consensus on the formal definition of the distribution shifts of OOD examples and how to best detect them. We categorize these examples as exhibiting a background shift or semantic shift, and find that the two major approaches to OOD detection, calibration and density estimation (language modeling for text), have distinct behavior on these types of OOD data. Across 14 pairs of in-distribution and OOD English natural language understanding datasets, we find that density estimation methods consistently beat calibration methods in background shift settings and perform worse in semantic shift settings. In addition, we find that both methods generally fail to detect examples from challenge data, indicating that these examples constitute a different type of OOD data. Overall, while the categorization we apply explains many of the differences between the two methods, our results call for a more explicit definition of OOD to create better benchmarks and build detectors that can target the type of OOD data expected at test time.

2020

pdf
MAST: Multimodal Abstractive Summarization with Trimodal Hierarchical Attention
Aman Khullar | Udit Arora
Proceedings of the First International Workshop on Natural Language Processing Beyond Text

This paper presents MAST, a new model for Multimodal Abstractive Text Summarization that utilizes information from all three modalities – text, audio and video – in a multimodal video. Prior work on multimodal abstractive text summarization only utilized information from the text and video modalities. We examine the usefulness and challenges of deriving information from the audio modality and present a sequence-to-sequence trimodal hierarchical attention-based model that overcomes these challenges by letting the model pay more attention to the text modality. MAST outperforms the current state of the art model (video-text) by 2.51 points in terms of Content F1 score and 1.00 points in terms of Rouge-L score on the How2 dataset for multimodal language understanding.