This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Machine Translation (MT) has greatly advanced over the years due to the developments in deep neural networks. However, the emergence of Large Language Models (LLMs) like GPT-4 and ChatGPT is introducing a new phase in the MT domain. In this context, we believe that the future of MT is intricately tied to the capabilities of LLMs. These models not only offer vast linguistic understandings but also bring innovative methodologies, such as prompt-based techniques, that have the potential to further elevate MT. In this paper, we provide an overview of the significant enhancements in MT that are influenced by LLMs and advocate for their pivotal role in upcoming MT research and implementations. We highlight several new MT directions, emphasizing the benefits of LLMs in scenarios such as Long-Document Translation, Stylized Translation, and Interactive Translation. Additionally, we address the important concern of privacy in LLM-driven MT and suggest essential privacy-preserving strategies. By showcasing practical instances, we aim to demonstrate the advantages that LLMs offer, particularly in tasks like translating extended documents. We conclude by emphasizing the critical role of LLMs in guiding the future evolution of MT and offer a roadmap for future exploration in the sector.
Modern Irish is a minority language lacking sufficient computational resources for the task of accurate automatic syntactic parsing of user-generated content such as tweets. Although language technology for the Irish language has been developing in recent years, these tools tend to perform poorly on user-generated content. As with other languages, the linguistic style observed in Irish tweets differs, in terms of orthography, lexicon, and syntax, from that of standard texts more commonly used for the development of language models and parsers. We release the first Universal Dependencies treebank of Irish tweets, facilitating natural language processing of user-generated content in Irish. In this paper, we explore the differences between Irish tweets and standard Irish text, and the challenges associated with dependency parsing of Irish tweets. We describe our bootstrapping method of treebank development and report on preliminary parsing experiments.
This paper provides an overview of the ongoing European Language Equality(ELE) project, an 18-month action funded by the European Commission which involves 52 partners. The primary goal of ELE is to prepare the European Language Equality Programme, in the form of a strategic research, innovation and implementation agenda and a roadmap for achieving full digital language equality (DLE) in Europe by 2030.
The BERT family of neural language models have become highly popular due to their ability to provide sequences of text with rich context-sensitive token encodings which are able to generalise well to many NLP tasks. We introduce gaBERT, a monolingual BERT model for the Irish language. We compare our gaBERT model to multilingual BERT and the monolingual Irish WikiBERT, and we show that gaBERT provides better representations for a downstream parsing task. We also show how different filtering criteria, vocabulary size and the choice of subword tokenisation model affect downstream performance. We compare the results of fine-tuning a gaBERT model with an mBERT model for the task of identifying verbal multiword expressions, and show that the fine-tuned gaBERT model also performs better at this task. We release gaBERT and related code to the community.
This paper reports on the investigation of using pre-trained language models for the identification of Irish verbal multiword expressions (vMWEs), comparing the results with the systems submitted for the PARSEME shared task edition 1.2. We compare the use of a monolingual BERT model for Irish (gaBERT) with multilingual BERT (mBERT), fine-tuned to perform MWE identification, presenting a series of experiments to explore the impact of hyperparameter tuning and dataset optimisation steps on these models. We compare the results of our optimised systems to those achieved by other systems submitted to the shared task, and present some best practices for minority languages addressing this task.
With official status in both Ireland and the EU, there is a need for high-quality English-Irish (EN-GA) machine translation (MT) systems which are suitable for use in a professional translation environment. While we have seen recent research on improving both statistical MT and neural MT for the EN-GA pair, the results of such systems have always been reported using automatic evaluation metrics. This paper provides the first human evaluation study of EN-GA MT using professional translators and in-domain (public administration) data for a more accurate depiction of the translation quality available via MT.
We describe the European Language Resource Infrastructure (ELRI), a decentralised network to help collect, prepare and share language resources. The infrastructure was developed within a project co-funded by the Connecting Europe Facility Programme of the European Union, and has been deployed in the four Member States participating in the project, namely France, Ireland, Portugal and Spain. ELRI provides sustainable and flexible means to collect and share language resources via National Relay Stations, to which members of public institutions can freely subscribe. The infrastructure includes fully automated data processing engines to facilitate the preparation, sharing and wider reuse of useful language resources that can help optimise human and automated translation services in the European Union.
The paper presents a discussion on the main linguistic phenomena of user-generated texts found in web and social media, and proposes a set of annotation guidelines for their treatment within the Universal Dependencies (UD) framework. Given on the one hand the increasing number of treebanks featuring user-generated content, and its somewhat inconsistent treatment in these resources on the other, the aim of this paper is twofold: (1) to provide a short, though comprehensive, overview of such treebanks - based on available literature - along with their main features and a comparative analysis of their annotation criteria, and (2) to propose a set of tentative UD-based annotation guidelines, to promote consistent treatment of the particular phenomena found in these types of texts. The main goal of this paper is to provide a common framework for those teams interested in developing similar resources in UD, thus enabling cross-linguistic consistency, which is a principle that has always been in the spirit of UD.
This paper describes the creation of two Irish corpora (labelled and unlabelled) for verbal MWEs for inclusion in the PARSEME Shared Task 1.2 on automatic identification of verbal MWEs, and the process of developing verbal MWE categories for Irish. A qualitative analysis on the two corpora is presented, along with discussion of Irish verbal MWEs.
This paper reports on the analysis and annotation of Multiword Expressions in the Irish Universal Dependency Treebank. We provide a linguistic discussion around decisions on how to appropri- ately label Irish MWEs using the compound, flat and fixed dependency relation labels within the framework of the Universal Dependencies annotation guidelines. We discuss some nuances of the Irish language that pose challenges for assigning these UD labels and provide this report in support of the Irish UD annotation guidelines. With this we hope to ensure consistency in annotation across the dataset and provide a basis for future MWE annotation for Irish.
This paper describes the categorisation of Irish MWEs, and the construction of the first version of a lexicon of Irish MWEs for NLP purposes (Ilfhocail, meaning ‘Multiwords’), collected from a number of resources. For the purposes of quality assurance, 530 entries of this lexicon were examined and manually annotated for POS information and MWE category.
We describe the European Language Resources Infrastructure project, whose main aim is the provision of an infrastructure to help collect, prepare and share language resources that can in turn improve translation services in Europe.
Shared tasks are increasingly common in our field, and new challenges are suggested at almost every conference and workshop. However, as this has become an established way of pushing research forward, it is important to discuss how we researchers organise and participate in shared tasks, and make that information available to the community to allow further research improvements. In this paper, we present a number of ethical issues along with other areas of concern that are related to the competitive nature of shared tasks. As such issues could potentially impact on research ethics in the Natural Language Processing community, we also propose the development of a framework for the organisation of and participation in shared tasks that can help mitigate against these issues arising.
Human-targeted metrics provide a compromise between human evaluation of machine translation, where high inter-annotator agreement is difficult to achieve, and fully automatic metrics, such as BLEU or TER, that lack the validity of human assessment. Human-targeted translation edit rate (HTER) is by far the most widely employed human-targeted metric in machine translation, commonly employed, for example, as a gold standard in evaluation of quality estimation. Original experiments justifying the design of HTER, as opposed to other possible formulations, were limited to a small sample of translations and a single language pair, however, and this motivates our re-evaluation of a range of human-targeted metrics on a substantially larger scale. Results show significantly stronger correlation with human judgment for HBLEU over HTER for two of the nine language pairs we include and no significant difference between correlations achieved by HTER and HBLEU for the remaining language pairs. Finally, we evaluate a range of quality estimation systems employing HTER and direct assessment (DA) of translation adequacy as gold labels, resulting in a divergence in system rankings, and propose employment of DA for future quality estimation evaluations.
Language resources are essential for linguistic research and the development of NLP applications. Low-density languages, such as Irish, therefore lack significant research in this area. This paper describes the early stages in the development of new language resources for Irish ― namely the first Irish dependency treebank and the first Irish statistical dependency parser. We present the methodology behind building our new treebank and the steps we take to leverage upon the few existing resources. We discuss language-specific choices made when defining our dependency labelling scheme, and describe interesting Irish language characteristics such as prepositional attachment, copula, and clefting. We manually develop a small treebank of 300 sentences based on an existing POS-tagged corpus and report an inter-annotator agreement of 0.7902. We train MaltParser to achieve preliminary parsing results for Irish and describe a bootstrapping approach for further stages of development.