We present an open-source, pip installable toolkit, Sig-Networks, the first of its kind for longitudinal language modelling. A central focus is the incorporation of Signature-based Neural Network models, which have recently shown success in temporal tasks. We apply and extend published research providing a full suite of signature-based models. Their components can be used as PyTorch building blocks in future architectures. Sig-Networks enables task-agnostic dataset plug-in, seamless preprocessing for sequential data, parameter flexibility, automated tuning across a range of models. We examine signature networks under three different NLP tasks of varying temporal granularity: counselling conversations, rumour stance switch and mood changes in social media threads, showing SOTA performance in all three, and provide guidance for future tasks. We release the Toolkit as a PyTorch package with an introductory video, Git repositories for preprocessing and modelling including sample notebooks on the modeled NLP tasks.
Dynamic representation learning plays a pivotal role in understanding the evolution of linguistic content over time. On this front both context and time dynamics as well as their interplay are of prime importance. Current approaches model context via pre-trained representations, which are typically temporally agnostic. Previous work on modelling context and temporal dynamics has used recurrent methods, which are slow and prone to overfitting. Here we introduce TempoFormer, the first task-agnostic transformer-based and temporally-aware model for dynamic representation learning. Our approach is jointly trained on inter and intra context dynamics and introduces a novel temporal variation of rotary positional embeddings. The architecture is flexible and can be used as the temporal representation foundation of other models or applied to different transformer-based architectures. We show new SOTA performance on three different real-time change detection tasks.
Through the rise of social media platforms, longitudinal language modelling has received much attention over the latest years, especially in downstream tasks such as mental health monitoring of individuals where modelling linguistic content in a temporal fashion is crucial. A key limitation in existing work is how to effectively model temporal sequences within Transformer-based language models. In this work we address this challenge by introducing a novel approach for predicting ‘Moments of Change’ (MoC) in the mood of online users, by simultaneously considering user linguistic and time-aware context. A Hawkes process-inspired transformation layer is applied over the proposed architecture to model the influence of time on users’ posts – capturing both their immediate and historical dynamics. We perform experiments on the two existing datasets for the MoC task and showcase clear performance gains when leveraging the proposed layer. Our ablation study reveals the importance of considering temporal dynamics in detecting subtle and rare mood changes. Our results indicate that considering linguistic and temporal information in a hierarchical manner provide valuable insights into the temporal dynamics of modelling user generated content over time, with applications in mental health monitoring.
Longitudinal user modeling can provide a strong signal for various downstream tasks. Despite the rapid progress in representation learning, dynamic aspects of modelling individuals’ language have only been sparsely addressed. We present a novel extension of neural sequential models using the notion of path signatures from rough path theory, which constitute graduated summaries of continuous paths and have the ability to capture non-linearities in trajectories. By combining path signatures of users’ history with contextual neural representations and recursive neural networks we can produce compact time-sensitive user representations. Given the magnitude of mental health conditions with symptoms manifesting in language, we show the applicability of our approach on the task of identifying changes in individuals’ mood by analysing their online textual content. By directly integrating signature transforms of users’ history in the model architecture we jointly address the two most important aspects of the task, namely sequentiality and temporality. Our approach achieves state-of-the-art performance on macro-average F1 score on the two available datasets for the task, outperforming or performing on-par with state-of-the-art models utilising only historical posts and even outperforming prior models which also have access to future posts of users.