Taelin Karidi


2024

pdf
Aligning Alignments: Do Colexification and Distributional Similarity Align as Measures of cross-lingual Lexical Alignment?
Taelin Karidi | Eitan Grossman | Omri Abend
Proceedings of the 28th Conference on Computational Natural Language Learning

The data-driven investigation of the extent to which lexicons of different languages align has mostly fallen into one of two categories:colexification-based and distributional. The two approaches are grounded in distinct methodologies, operate on different assumptions, and are used in diverse ways.This raises two important questions: (a) are there settings in which the predictions of the two approaches can be directly compared? and if so, (b) what is the extent of the similarity and what are its determinants? We offer novel operationalizations for the two approaches in a manner that allows for their direct comparison, and conduct a comprehensive analysis on a diverse set of 16 languages.Our analysis is carried out at different levels of granularity. At the word-level, the two methods present different results across the board. However, intriguingly, at the level of semantic domains (e.g., kinship, quantity), the two methods show considerable convergence in their predictions.A detailed comparison of the metrics against a carefully validated dataset of kinship terms shows that the distributional methods likely capture a more fine-grained alignment than their counterpart colexification-based methods, and may thus be more suited for settings where fewer languages are evaluated.

pdf
Locally Measuring Cross-lingual Lexical Alignment: A Domain and Word Level Perspective
Taelin Karidi | Eitan Grossman | Omri Abend
Findings of the Association for Computational Linguistics: EMNLP 2024

NLP research on aligning lexical representation spaces to one another has so far focused on aligning language spaces in their entirety. However, cognitive science has long focused on a local perspective, investigating whether translation equivalents truly share the same meaning or the extent that cultural and regional influences result in meaning variations. With recent technological advances and the increasing amounts of available data, the longstanding question of cross-lingual lexical alignment can now be approached in a more data-driven manner. However, developing metrics for the task requires some methodology for comparing metric efficacy. We address this gap and present a methodology for analyzing both synthetic validations and a novel naturalistic validation using lexical gaps in the kinship domain.We further propose new metrics, hitherto unexplored on this task, based on contextualized embeddings. Our analysis spans 16 diverse languages, demonstrating that there is substantial room for improvement with the use of newer language models. Our research paves the way for more accurate and nuanced cross-lingual lexical alignment methodologies and evaluation.

pdf
Jump to Conclusions: Short-Cutting Transformers with Linear Transformations
Alexander Yom Din | Taelin Karidi | Leshem Choshen | Mor Geva
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Transformer-based language models create hidden representations of their inputs at every layer, but only use final-layer representations for prediction. This obscures the internal decision-making process of the model and the utility of its intermediate representations. One way to elucidate this is to cast the hidden representations as final representations, bypassing the transformer computation in-between. In this work, we suggest a simple method for such casting, using linear transformations. This approximation far exceeds the prevailing practice of inspecting hidden representations from all layers, in the space of the final layer. Moreover, in the context of language modeling, our method produces more accurate predictions from hidden layers, across various model scales, architectures, and data distributions. This allows “peeking” into intermediate representations, showing that GPT-2 and BERT often predict the final output already in early layers. We then demonstrate the practicality of our method to recent early exit strategies, showing that when aiming, for example, at retention of 95% accuracy, our approach saves additional 7.9% layers for GPT-2 and 5.4% layers for BERT. Last, we extend our method to linearly approximate sub-modules, finding that attention is most tolerant to this change. Our code and learned mappings are publicly available at https://github.com/sashayd/mat.

2023

pdf
MuLER: Detailed and Scalable Reference-based Evaluation
Taelin Karidi | Leshem Choshen | Gal Patel | Omri Abend
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)

We propose a novel methodology (namely, MuLER) that transforms any reference-based evaluation metric for text generation, such as machine translation (MT) into a fine-grained analysis tool. Given a system and a metric, MuLER quantifies how much the chosen metric penalizes specific error types (e.g., errors in translating names of locations). MuLER thus enables a detailed error analysis which can lead to targeted improvement efforts for specific phenomena. We perform experiments in both synthetic and naturalistic settings to support MuLER’s validity and showcase its usability in MT evaluation, and other tasks, such as summarization. Analyzing all submissions to WMT in 2014-2020, we find consistent trends. For example, nouns and verbs are among the most frequent POS tags. However, they are among the hardest to translate. Performance on most POS tags improves with overall system performance, but a few are not thus correlated (their identity changes from language to language). Preliminary experiments with summarization reveal similar trends.

pdf
Improving Cross-lingual Transfer through Subtree-aware Word Reordering
Ofir Arviv | Dmitry Nikolaev | Taelin Karidi | Omri Abend
Findings of the Association for Computational Linguistics: EMNLP 2023

Despite the impressive growth of the abilities of multilingual language models, such as XLM-R and mT5, it has been shown that they still face difficulties when tackling typologically-distant languages, particularly in the low-resource setting. One obstacle for effective cross-lingual transfer is variability in word-order patterns. It can be potentially mitigated via source- or target-side word reordering, and numerous approaches to reordering have been proposed. However, they rely on language-specific rules, work on the level of POS tags, or only target the main clause, leaving subordinate clauses intact. To address these limitations, we present a new powerful reordering method, defined in terms of Universal Dependencies, that is able to learn fine-grained word-order patterns conditioned on the syntactic context from a small amount of annotated data and can be applied at all levels of the syntactic tree. We conduct experiments on a diverse set of tasks and show that our method consistently outperforms strong baselines over different language pairs and model architectures. This performance advantage holds true in both zero-shot and few-shot scenarios.

2021

pdf
On the Relation between Syntactic Divergence and Zero-Shot Performance
Ofir Arviv | Dmitry Nikolaev | Taelin Karidi | Omri Abend
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We explore the link between the extent to which syntactic relations are preserved in translation and the ease of correctly constructing a parse tree in a zero-shot setting. While previous work suggests such a relation, it tends to focus on the macro level and not on the level of individual edges—a gap we aim to address. As a test case, we take the transfer of Universal Dependencies (UD) parsing from English to a diverse set of languages and conduct two sets of experiments. In one, we analyze zero-shot performance based on the extent to which English source edges are preserved in translation. In another, we apply three linguistically motivated transformations to UD, creating more cross-lingually stable versions of it, and assess their zero-shot parsability. In order to compare parsing performance across different schemes, we perform extrinsic evaluation on the downstream task of cross-lingual relation extraction (RE) using a subset of a standard English RE benchmark translated to Russian and Korean. In both sets of experiments, our results suggest a strong relation between cross-lingual stability and zero-shot parsing performance.

pdf
Putting Words in BERT’s Mouth: Navigating Contextualized Vector Spaces with Pseudowords
Taelin Karidi | Yichu Zhou | Nathan Schneider | Omri Abend | Vivek Srikumar
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We present a method for exploring regions around individual points in a contextualized vector space (particularly, BERT space), as a way to investigate how these regions correspond to word senses. By inducing a contextualized “pseudoword” vector as a stand-in for a static embedding in the input layer, and then performing masked prediction of a word in the sentence, we are able to investigate the geometry of the BERT-space in a controlled manner around individual instances. Using our method on a set of carefully constructed sentences targeting highly ambiguous English words, we find substantial regularity in the contextualized space, with regions that correspond to distinct word senses; but between these regions there are occasionally “sense voids”—regions that do not correspond to any intelligible sense.

2020

pdf
Fine-Grained Analysis of Cross-Linguistic Syntactic Divergences
Dmitry Nikolaev | Ofir Arviv | Taelin Karidi | Neta Kenneth | Veronika Mitnik | Lilja Maria Saeboe | Omri Abend
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The patterns in which the syntax of different languages converges and diverges are often used to inform work on cross-lingual transfer. Nevertheless, little empirical work has been done on quantifying the prevalence of different syntactic divergences across language pairs. We propose a framework for extracting divergence patterns for any language pair from a parallel corpus, building on Universal Dependencies. We show that our framework provides a detailed picture of cross-language divergences, generalizes previous approaches, and lends itself to full automation. We further present a novel dataset, a manually word-aligned subset of the Parallel UD corpus in five languages, and use it to perform a detailed corpus study. We demonstrate the usefulness of the resulting analysis by showing that it can help account for performance patterns of a cross-lingual parser.