This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Making inferences in text comprehension to understand the meaning is essential in language processing. This work studies the entailment verification (EV) problem of complex, multi-sentence premises requiring a system to make multiple inferences implicitly. Modern applications of EV in detecting inconsistent model-generated rationales require complex multi-hop reasoning. However, current textual inference datasets mostly contain short-sentence premises that partially focus on this. To address this, we compile an EV benchmark that includes datasets from three NLP domains (NLI, contextual QA, and rationales) containing multi-sentence premises. On benchmarking humans and LLMs, we find that LLMs are better than humans in multi-hop reasoning across extended contexts, while humans perform better in simple deductive reasoning tasks. We also finetune a Flan-T5 model for EV using two training objectives to obtain a strong open-source model that outperforms GPT-3.5 and rivals GPT-4. Finally, we use our finetuned model to filter out inconsistent model-generated rationales in self-consistency decoding, resulting in a 6% accuracy improvement on average across three MCQ datasets.
In a plethora of recent work, large language models (LLMs) demonstrated impressive reasoning ability, but many proposed downstream reasoning tasks only focus on performance-wise evaluation. Two fundamental questions persist: 1) how consistent is the reasoning, and 2) can models detect unreliable reasoning? In this paper, we investigate self-contradictory (Self-Contra) reasoning, where the model reasoning does not support answers. To answer 1), we define and assess the Self-Contra rate across three datasets and delve into finer-grained categories of Self-Contra reasoning. We find that LLMs often contradict themselves in reasoning tasks involving contextual information understanding or commonsense. The model may generate correct answers by taking shortcuts in reasoning or overlooking contextual evidence, leading to compromised reasoning. For 2), we task the state-of-the-art model GPT-4 with identifying Self-Contra reasoning and finer-grained fallacies. We find that finer-grained aided detection can improve GPT-4’s ability to detect Self-Contra. However, it is only able to detect Self-Contra with a 52.2% F1 score, much lower compared to 66.7% for humans. Our results indicate that current LLMs lack the robustness necessary for reliable reasoning and we emphasize the urgent need for establishing best practices in comprehensive reasoning evaluations beyond pure performance-based metrics.
Logical reasoning over text is an important ability that requires understanding the semantics of the text and reasoning through them to arrive at correct inferences. Prior works on pretraining language models to improve the logical reasoning ability require complex processing of training data (e.g., aligning symbolic knowledge to text), yielding task-specific data augmentation that is not easy to adapt to any general text corpus. In this work, we propose APOLLO, a simple adaptive pretraining approach to improve the logical reasoning skills of language models. We select a subset of Wikipedia for adaptive pretraining using a set of logical inference keywords as filter words. Further, we propose two self-supervised loss functions for training. First, we modify the masked language modeling loss only to mask specific parts-of-speech words that likely require higher-order reasoning to predict them. Second, we propose a sentence-level classification loss that teaches the model to distinguish between entailment and contradiction types of sentences. The proposed pretraining paradigm is both simple and independent of task formats. We demonstrate the effectiveness of APOLLO by comparing it with prior baselines on two logical reasoning datasets. APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
Transformers have been shown to be able to perform deductive reasoning on a logical rulebase containing rules and statements written in natural language. Recent works show that such models can also produce the reasoning steps (i.e., the proof graph) that emulate the model’s logical reasoning process. Currently, these black-box models generate both the proof graph and intermediate inferences within the same model and thus may be unfaithful. In this work, we frame the deductive logical reasoning task by defining three modular components: rule selection, fact selection, and knowledge composition. The rule and fact selection steps select the candidate rule and facts to be used and then the knowledge composition combines them to generate new inferences. This ensures model faithfulness by assured causal relation from the proof step to the inference reasoning. To test our framework, we propose FaiRR (Faithful and Robust Reasoner) where the above three components are independently modeled by transformers. We observe that FaiRR is robust to novel language perturbations, and is faster at inference than previous works on existing reasoning datasets. Additionally, in contrast to black-box generative models, the errors made by FaiRR are more interpretable due to the modular approach.
Transformers have been shown to be able to perform deductive reasoning on inputs containing rules and statements written in the English natural language. However, it is unclear if these models indeed follow rigorous logical reasoning to arrive at the prediction or rely on spurious correlation patterns in making decisions. A strong deductive reasoning model should consistently understand the semantics of different logical operators. To this end, we present RobustLR, a diagnostic benchmark that evaluates the robustness of language models to minimal logical edits in the inputs and different logical equivalence conditions. In our experiments with RoBERTa, T5, and GPT3 we show that the models trained on deductive reasoning datasets do not perform consistently on the RobustLR test set, thus showing that the models are not robust to our proposed logical perturbations. Further, we observe that the models find it especially hard to learn logical negation operators. Our results demonstrate the shortcomings of current language models in logical reasoning and call for the development of better inductive biases to teach the logical semantics to language models. All the datasets and code base have been made publicly available.
As a prominent attribution-based explanation algorithm, Integrated Gradients (IG) is widely adopted due to its desirable explanation axioms and the ease of gradient computation. It measures feature importance by averaging the model’s output gradient interpolated along a straight-line path in the input data space. However, such straight-line interpolated points are not representative of text data due to the inherent discreteness of the word embedding space. This questions the faithfulness of the gradients computed at the interpolated points and consequently, the quality of the generated explanations. Here we propose Discretized Integrated Gradients (DIG), which allows effective attribution along non-linear interpolation paths. We develop two interpolation strategies for the discrete word embedding space that generates interpolation points that lie close to actual words in the embedding space, yielding more faithful gradient computation. We demonstrate the effectiveness of DIG over IG through experimental and human evaluations on multiple sentiment classification datasets. We provide the source code of DIG to encourage reproducible research.
Knowledge Graph Completion (KGC) aims at automatically predicting missing links for large-scale knowledge graphs. A vast number of state-of-the-art KGC techniques have got published at top conferences in several research fields, including data mining, machine learning, and natural language processing. However, we notice that several recent papers report very high performance, which largely outperforms previous state-of-the-art methods. In this paper, we find that this can be attributed to the inappropriate evaluation protocol used by them and propose a simple evaluation protocol to address this problem. The proposed protocol is robust to handle bias in the model, which can substantially affect the final results. We conduct extensive experiments and report performance of several existing methods using our protocol. The reproducible code has been made publicly available.