Guardrails have emerged as an alternative to safety alignment for content moderation of large language models (LLMs). Existing model-based guardrails have not been designed for resource-constrained computational portable devices, such as mobile phones, more and more of which are running LLM-based applications locally. We introduce LoRA-Guard, a parameter-efficient guardrail adaptation method that relies on knowledge sharing between LLMs and guardrail models. LoRA-Guard extracts language features from the LLMs and adapts them for the content moderation task using low-rank adapters, while a dual-path design prevents any performance degradation on the generative task. We show that LoRA-Guard outperforms existing approaches with 100-1000x lower parameter overhead while maintaining accuracy, enabling on-device content moderation.
Previous sarcasm generation research has focused on how to generate text that people perceive as sarcastic to create more human-like interactions. In this paper, we argue that we should first turn our attention to the question of when sarcasm should be generated, finding that humans consider sarcastic responses inappropriate to many input utterances. Next, we use a theory-driven framework for generating sarcastic responses, which allows us to control the linguistic devices included during generation. For each device, we investigate how much humans associate it with sarcasm, finding that pragmatic insincerity and emotional markers are devices crucial for making sarcasm recognisable.
Cross-lingual alignment of word embeddings are important in knowledge transfer across languages, for improving machine translation and other multi-lingual applications. Current unsupervised approaches relying on learning structure-preserving transformations, using adversarial networks and refinement strategies, suffer from instability and convergence issues. This paper proposes BioSpere, a novel multi-stage framework for unsupervised mapping of bi-lingual word embeddings onto a shared vector space, by combining adversarial initialization, refinement procedure and point set registration. Experiments for parallel dictionary induction and word similarity demonstrate state-of-the-art unsupervised results for BioSpere on diverse languages – showcasing robustness against variable adversarial performance.
iSarcasmEval is the first shared task to target intended sarcasm detection: the data for this task was provided and labelled by the authors of the texts themselves. Such an approach minimises the downfalls of other methods to collect sarcasm data, which rely on distant supervision or third-party annotations. The shared task contains two languages, English and Arabic, and three subtasks: sarcasm detection, sarcasm category classification, and pairwise sarcasm identification given a sarcastic sentence and its non-sarcastic rephrase. The task received submissions from 60 different teams, with the sarcasm detection task being the most popular. Most of the participating teams utilised pre-trained language models. In this paper, we provide an overview of the task, data, and participating teams.