Shuning Jin


2020

pdf
Discrete Latent Variable Representations for Low-Resource Text Classification
Shuning Jin | Sam Wiseman | Karl Stratos | Karen Livescu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While much work on deep latent variable models of text uses continuous latent variables, discrete latent variables are interesting because they are more interpretable and typically more space efficient. We consider several approaches to learning discrete latent variable models for text in the case where exact marginalization over these variables is intractable. We compare the performance of the learned representations as features for low-resource document and sentence classification. Our best models outperform the previous best reported results with continuous representations in these low-resource settings, while learning significantly more compressed representations. Interestingly, we find that an amortized variant of Hard EM performs particularly well in the lowest-resource regimes.

pdf
Duluth at SemEval-2020 Task 7: Using Surprise as a Key to Unlock Humorous Headlines
Shuning Jin | Yue Yin | XianE Tang | Ted Pedersen
Proceedings of the Fourteenth Workshop on Semantic Evaluation

We use pretrained transformer-based language models in SemEval-2020 Task 7: Assessing the Funniness of Edited News Headlines. Inspired by the incongruity theory of humor, we use a contrastive approach to capture the surprise in the edited headlines. In the official evaluation, our system gets 0.531 RMSE in Subtask 1, 11th among 49 submissions. In Subtask 2, our system gets 0.632 accuracy, 9th among 32 submissions.

2019

pdf
Can You Tell Me How to Get Past Sesame Street? Sentence-Level Pretraining Beyond Language Modeling
Alex Wang | Jan Hula | Patrick Xia | Raghavendra Pappagari | R. Thomas McCoy | Roma Patel | Najoung Kim | Ian Tenney | Yinghui Huang | Katherin Yu | Shuning Jin | Berlin Chen | Benjamin Van Durme | Edouard Grave | Ellie Pavlick | Samuel R. Bowman
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Natural language understanding has recently seen a surge of progress with the use of sentence encoders like ELMo (Peters et al., 2018a) and BERT (Devlin et al., 2019) which are pretrained on variants of language modeling. We conduct the first large-scale systematic study of candidate pretraining tasks, comparing 19 different tasks both as alternatives and complements to language modeling. Our primary results support the use language modeling, especially when combined with pretraining on additional labeled-data tasks. However, our results are mixed across pretraining tasks and show some concerning trends: In ELMo’s pretrain-then-freeze paradigm, random baselines are worryingly strong and results vary strikingly across target tasks. In addition, fine-tuning BERT on an intermediate task often negatively impacts downstream transfer. In a more positive trend, we see modest gains from multitask training, suggesting the development of more sophisticated multitask and transfer learning techniques as an avenue for further research.

2018

pdf
Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction with Ensemble Learning and Oversampling
Shuning Jin | Ted Pedersen
Proceedings of the 12th International Workshop on Semantic Evaluation

This paper describes the Duluth UROP systems that participated in SemEval–2018 Task 2, Multilingual Emoji Prediction. We relied on a variety of ensembles made up of classifiers using Naive Bayes, Logistic Regression, and Random Forests. We used unigram and bigram features and tried to offset the skewness of the data through the use of oversampling. Our task evaluation results place us 19th of 48 systems in the English evaluation, and 5th of 21 in the Spanish. After the evaluation we realized that some simple changes to our pre-processing could significantly improve our results. After making these changes we attained results that would have placed us sixth in the English evaluation, and second in the Spanish.