Saijiang Shi
2023
IAG: Induction-Augmented Generation Framework for Answering Reasoning Questions
Zhebin Zhang
|
Xinyu Zhang
|
Yuanhang Ren
|
Saijiang Shi
|
Meng Han
|
Yongkang Wu
|
Ruofei Lai
|
Zhao Cao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Retrieval-Augmented Generation (RAG), by incorporating external knowledge with parametric memory of language models, has become the state-of-the-art architecture for open-domain QA tasks. However, common knowledge bases are inherently constrained by limited coverage and noisy information, making retrieval-based approaches inadequate to answer implicit reasoning questions. In this paper, we propose an Induction-Augmented Generation (IAG) framework that utilizes inductive knowledge along with the retrieved documents for implicit reasoning. We leverage large language models (LLMs) for deriving such knowledge via a novel prompting method based on inductive reasoning patterns. On top of this, we implement two versions of IAG named IAG-GPT and IAG-Student, respectively. IAG-GPT directly utilizes the knowledge generated by GPT-3 for answer prediction, while IAG-Student gets rid of dependencies on GPT service at inference time by incorporating a student inductor model. The inductor is firstly trained via knowledge distillation and further optimized by back-propagating the generator feedback via differentiable beam scores. Experimental results show that IAG outperforms RAG baselines as well as ChatGPT on two Open-Domain QA tasks. Notably, our best models have won the first place in the official leaderboards of CSQA2.0 (since Nov 1, 2022) and StrategyQA (since Jan 8, 2023).
Search
Co-authors
- Meng Han 1
- Ruofei Lai 1
- Xinyu Zhang 1
- Yongkang Wu 1
- Yuanhang Ren 1
- show all...