2024
pdf
abs
Taylor Unswift: Secured Weight Release for Large Language Models via Taylor Expansion
Guanchu Wang
|
Yu-Neng Chuang
|
Ruixiang Tang
|
Shaochen Zhong
|
Jiayi Yuan
|
Hongye Jin
|
Zirui Liu
|
Vipin Chaudhary
|
Shuai Xu
|
James Caverlee
|
Xia Hu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Ensuring the security of released large language models (LLMs) poses a significant dilemma, as existing mechanisms either compromise ownership rights or raise data privacy concerns. To address this dilemma, we introduce TaylorMLP to protect the ownership of released LLMs and prevent their abuse. Specifically, TaylorMLP preserves the ownership of LLMs by transforming the weights of LLMs into parameters of Taylor-series. Instead of releasing the original weights, developers can release the Taylor-series parameters with users, thereby ensuring the security of LLMs. Moreover, TaylorMLP can prevent abuse of LLMs by adjusting the generation speed. It can induce low-speed token generation for the protected LLMs by increasing the terms in the Taylor-series. This intentional delay helps LLM developers prevent potential large-scale unauthorized uses of their models. Empirical experiments across five datasets and three LLM architectures demonstrate that TaylorMLP induces over increase in latency, producing the tokens precisely matched with original LLMs. Subsequent defensive experiments further confirm that TaylorMLP effectively prevents users from reconstructing the weight values based on downstream datasets.
pdf
abs
Secure Your Model: An Effective Key Prompt Protection Mechanism for Large Language Models
Ruixiang Tang
|
Yu-Neng Chuang
|
Xuanting Cai
|
Mengnan Du
|
Xia Hu
Findings of the Association for Computational Linguistics: NAACL 2024
Large language models (LLMs) have notably revolutionized many domains within natural language processing due to their exceptional performance. Their security has become increasingly vital. This study is centered on protecting LLMs against unauthorized access and potential theft. We propose a simple yet effective protective measure wherein a unique key prompt is embedded within the LLM. This mechanism enables the model to respond only when presented with the correct key prompt; otherwise, LLMs will refuse to react to any input instructions. This key prompt protection offers a robust solution to prevent the unauthorized use of LLMs, as the model becomes unusable without the correct key. We evaluated the proposed protection on multiple LLMs and NLP tasks. Results demonstrate that our method can successfully protect the LLM without significantly impacting the model’s original function. Moreover, we demonstrate potential attacks that attempt to bypass the protection mechanism will adversely affect the model’s performance, further emphasizing the effectiveness of the proposed protection method.
pdf
abs
Navigating the Shortcut Maze: A Comprehensive Analysis of Shortcut Learning in Text Classification by Language Models
Yuqing Zhou
|
Ruixiang Tang
|
Ziyu Yao
|
Ziwei Zhu
Findings of the Association for Computational Linguistics: EMNLP 2024
Language models (LMs), despite their advances, often depend on spurious correlations, undermining their accuracy and generalizability. This study addresses the overlooked impact of subtler, more complex shortcuts that compromise model reliability beyond oversimplified shortcuts. We introduce a comprehensive benchmark that categorizes shortcuts into occurrence, style, and concept, aiming to explore the nuanced ways in which these shortcuts influence the performance of LMs. Through extensive experiments across traditional LMs, large language models, and state-of-the-art robust models, our research systematically investigates models’ resilience and susceptibilities to sophisticated shortcuts. Our benchmark and code can be found at: https://github.com/yuqing-zhou/shortcut-learning-in-text-classification.
pdf
abs
TrustAgent: Towards Safe and Trustworthy LLM-based Agents
Wenyue Hua
|
Xianjun Yang
|
Mingyu Jin
|
Zelong Li
|
Wei Cheng
|
Ruixiang Tang
|
Yongfeng Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
The rise of LLM-based agents shows great potential to revolutionize task planning, capturing significant attention. Given that these agents will be integrated into high-stake domains, ensuring their reliability and safety is crucial. This paper presents an Agent-Constitution-based agent framework, TrustAgent, with a particular focus on improving the LLM-based agent safety. The proposed framework ensures strict adherence to the Agent Constitution through three strategic components: pre-planning strategy which injects safety knowledge to the model before plan generation, in-planning strategy which enhances safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection. Our experimental results demonstrate that the proposed framework can effectively enhance an LLM agent’s safety across multiple domains by identifying and mitigating potential dangers during the planning. Further analysis reveals that the framework not only improves safety but also enhances the helpfulness of the agent. Additionally, we highlight the importance of the LLM reasoning ability in adhering to the Constitution. This paper sheds light on how to ensure the safe integration of LLM-based agents into human-centric environments. Data and code are available at
https://anonymous.4open.science/r/TrustAgent-06DC.
2023
pdf
abs
Large Language Models Can be Lazy Learners: Analyze Shortcuts in In-Context Learning
Ruixiang Tang
|
Dehan Kong
|
Longtao Huang
|
Hui Xue
Findings of the Association for Computational Linguistics: ACL 2023
Large language models (LLMs) have recently shown great potential for in-context learning, where LLMs learn a new task simply by conditioning on a few input-label pairs (prompts). Despite their potential, our understanding of the factors influencing end-task performance and the robustness of in-context learning remains limited. This paper aims to bridge this knowledge gap by investigating the reliance of LLMs on shortcuts or spurious correlations within prompts. Through comprehensive experiments on classification and extraction tasks, we reveal that LLMs are “lazy learners” that tend to exploit such shortcuts. Additionally, we uncover a surprising finding that larger models are more likely to utilize shortcuts in prompts during inference. Our findings provide a new perspective on evaluating robustness in in-context learning and pose new challenges for detecting and mitigating the use of shortcuts in prompts.
pdf
abs
Assessing Privacy Risks in Language Models: A Case Study on Summarization Tasks
Ruixiang Tang
|
Gord Lueck
|
Rodolfo Quispe
|
Huseyin Inan
|
Janardhan Kulkarni
|
Xia Hu
Findings of the Association for Computational Linguistics: EMNLP 2023
Large language models have revolutionized the field of NLP by achieving state-of-the-art performance on various tasks. However, there is a concern that these models may disclose information in the training data. In this study, we focus on the summarization task and investigate the membership inference (MI) attack: given a sample and black-box access to a model’s API, it is possible to determine if the sample was part of the training data. We exploit text similarity and the model’s resistance to document modifications as potential MI signals and evaluate their effectiveness on widely used datasets. Our results demonstrate that summarization models are at risk of exposing data membership, even in cases where the reference summary is not available. Furthermore, we discuss several safeguards for training summarization models to protect against MI attacks and discuss the inherent trade-off between privacy and utility.