Rudra Mutalik


2024

pdf
Extracting and Summarizing Evidence of Suicidal Ideation in Social Media Contents Using Large Language Models
Loitongbam Gyanendro Singh | Junyu Mao | Rudra Mutalik | Stuart E. Middleton
Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024)

This paper explores the use of Large Language Models (LLMs) in analyzing social media content for mental health monitoring, specifically focusing on detecting and summarizing evidence of suicidal ideation. We utilized LLMs Mixtral7bx8 and Tulu-2-DPO-70B, applying diverse prompting strategies for effective content extraction and summarization. Our methodology included detailed analysis through Few-shot and Zero-shot learning, evaluating the ability of Chain-of-Thought and Direct prompting strategies. The study achieved notable success in the CLPsych 2024 shared task (ranked top for the evidence extraction task and second for the summarization task), demonstrating the potential of LLMs in mental health interventions and setting a precedent for future research in digital mental health monitoring.